Improve display and code structure.

main
Alex J. Champandard 9 years ago
parent 749b467f94
commit 58e1bed4a6

@ -19,6 +19,7 @@ import sys
import bz2 import bz2
import glob import glob
import math import math
import time
import pickle import pickle
import random import random
import argparse import argparse
@ -34,12 +35,13 @@ add_arg = parser.add_argument
add_arg('--batch-size', default=15, type=int) add_arg('--batch-size', default=15, type=int)
add_arg('--batch-resolution', default=256, type=int) add_arg('--batch-resolution', default=256, type=int)
add_arg('--epoch-size', default=36, type=int) add_arg('--epoch-size', default=36, type=int)
add_arg('--epochs', default=15, type=int) add_arg('--epochs', default=25, type=int)
add_arg('--generator-filters', default=128, type=int) add_arg('--generator-filters', default=128, type=int)
add_arg('--generator-blocks', default=4, type=int) add_arg('--generator-blocks', default=4, type=int)
add_arg('--generator-residual', default=2, type=int)
add_arg('--perceptual-layer', default='conv2_2', type=str) add_arg('--perceptual-layer', default='conv2_2', type=str)
add_arg('--perceptual-weight', default=1e0, type=float) add_arg('--perceptual-weight', default=1e0, type=float)
add_arg('--smoothness-weight', default=1e4, type=float) add_arg('--smoothness-weight', default=1e6, type=float)
add_arg('--adversary-weight', default=0.0, type=float) add_arg('--adversary-weight', default=0.0, type=float)
add_arg('--scales', default=1, type=int, help='') add_arg('--scales', default=1, type=int, help='')
add_arg('--device', default='gpu0', type=str, help='Name of the CPU/GPU number to use, for Theano.') add_arg('--device', default='gpu0', type=str, help='Name of the CPU/GPU number to use, for Theano.')
@ -50,8 +52,8 @@ args = parser.parse_args()
# Color coded output helps visualize the information a little better, plus it looks cool! # Color coded output helps visualize the information a little better, plus it looks cool!
class ansi: class ansi:
BOLD = '\033[1;97m'
WHITE = '\033[0;97m' WHITE = '\033[0;97m'
WHITE_B = '\033[1;97m'
YELLOW = '\033[0;33m' YELLOW = '\033[0;33m'
YELLOW_B = '\033[1;33m' YELLOW_B = '\033[1;33m'
RED = '\033[0;31m' RED = '\033[0;31m'
@ -118,7 +120,6 @@ class DataLoader(threading.Thread):
def run(self): def run(self):
files, cache = glob.glob('train/*.jpg'), {} files, cache = glob.glob('train/*.jpg'), {}
while True: while True:
random.shuffle(files) random.shuffle(files)
for i, f in enumerate(files[:args.batch_size]): for i, f in enumerate(files[:args.batch_size]):
@ -190,14 +191,15 @@ class Model(object):
def last_layer(self): def last_layer(self):
return list(self.network.values())[-1] return list(self.network.values())[-1]
def make_block(self, input, units): def make_layer(self, input, units, filter_size=(3,3), stride=(1,1), pad=(1,1)):
l1 = batch_norm(ConvLayer(input, units, filter_size=(3,3), stride=(1,1), pad=1)) conv = ConvLayer(input, units, filter_size=filter_size, stride=stride, pad=pad,
l2 = batch_norm(ConvLayer(l1, units, filter_size=(3,3), stride=(1,1), pad=1)) nonlinearity=lasagne.nonlinearities.elu)
return ElemwiseSumLayer([input, l2]) return batch_norm(conv)
def make_layer(self, input, units, filter_size=(3,3), stride=(1,1), pad=(1,1), nl=None): def make_block(self, input, units):
return ConvLayer(input, units, filter_size=filter_size, stride=stride, pad=pad, l1 = self.make_layer(input, units)
nonlinearity=nl or lasagne.nonlinearities.rectify) l2 = self.make_layer(l1, units)
return ElemwiseSumLayer([input, l2]) if args.generator_residual > 0 else l2
def setup_generator(self, input): def setup_generator(self, input):
units = args.generator_filters units = args.generator_filters
@ -220,15 +222,15 @@ class Model(object):
self.network['disc3'] = ConvLayer(self.network['conv3_2'], 256, filter_size=(3,3), stride=(1,1), pad=(1,1)) self.network['disc3'] = ConvLayer(self.network['conv3_2'], 256, filter_size=(3,3), stride=(1,1), pad=(1,1))
hypercolumn = ConcatLayer([self.network['disc1'], self.network['disc2'], self.network['disc3']]) hypercolumn = ConcatLayer([self.network['disc1'], self.network['disc2'], self.network['disc3']])
self.network['disc4'] = ConvLayer(hypercolumn, 192, filter_size=(3,3), stride=(1,1)) self.network['disc4'] = ConvLayer(hypercolumn, 192, filter_size=(3,3), stride=(1,1))
self.network['disc'] = batch_norm(ConvLayer(self.last_layer(), 1, filter_size=(1,1), stride=(1,1), pad=(0,0), self.network['disc'] = ConvLayer(self.last_layer(), 1, filter_size=(1,1), stride=(1,1), pad=(0,0),
nonlinearity=lasagne.nonlinearities.sigmoid)) nonlinearity=lasagne.nonlinearities.sigmoid)
def setup_perceptual(self, input): def setup_perceptual(self, input):
"""Use lasagne to create a network of convolution layers using pre-trained VGG19 weights. """Use lasagne to create a network of convolution layers using pre-trained VGG19 weights.
""" """
offset = np.array([103.939, 116.779, 123.680], dtype=np.float32).reshape((1,3,1,1)) offset = np.array([103.939, 116.779, 123.680], dtype=np.float32).reshape((1,3,1,1))
self.network['percept'] = lasagne.layers.NonlinearityLayer(input, lambda x: ((x+0.5).clip(0.0, 1.0)*255.0) - offset) self.network['percept'] = lasagne.layers.NonlinearityLayer(input, lambda x: ((x+0.5)*255.0) - offset)
self.network['mse'] = self.network['percept'] self.network['mse'] = self.network['percept']
self.network['conv1_1'] = ConvLayer(self.network['percept'], 64, 3, pad=1) self.network['conv1_1'] = ConvLayer(self.network['percept'], 64, 3, pad=1)
@ -273,9 +275,10 @@ class Model(object):
# Generator loss function, parameters and updates. # Generator loss function, parameters and updates.
self.gen_lr = theano.shared(np.array(0.0, dtype=theano.config.floatX)) self.gen_lr = theano.shared(np.array(0.0, dtype=theano.config.floatX))
self.adversary_weight = theano.shared(np.array(0.0, dtype=theano.config.floatX))
gen_losses = [self.loss_perceptual(percept_out) * args.perceptual_weight, gen_losses = [self.loss_perceptual(percept_out) * args.perceptual_weight,
self.loss_total_variation(gen_out) * args.smoothness_weight, self.loss_total_variation(gen_out) * args.smoothness_weight]
self.loss_adversarial(disc_out) * args.adversary_weight] #self.loss_adversarial(disc_out) * self.adversary_weight]
gen_params = lasagne.layers.get_all_params(self.network['out'], trainable=True) gen_params = lasagne.layers.get_all_params(self.network['out'], trainable=True)
print(' - {} tensors learned for generator.'.format(len(gen_params))) print(' - {} tensors learned for generator.'.format(len(gen_params)))
gen_updates = lasagne.updates.adam(sum(gen_losses, 0.0), gen_params, learning_rate=self.gen_lr) gen_updates = lasagne.updates.adam(sum(gen_losses, 0.0), gen_params, learning_rate=self.gen_lr)
@ -292,9 +295,9 @@ class Model(object):
self.fit = theano.function([input_tensor], gen_losses, updates=collections.OrderedDict(updates)) self.fit = theano.function([input_tensor], gen_losses, updates=collections.OrderedDict(updates))
# Helper function for rendering test images deterministically, computing statistics. # Helper function for rendering test images deterministically, computing statistics.
gen_out, gen_inp = lasagne.layers.get_output([self.network['out'], self.network['img']], gen_out, gen_inp, disc_out = lasagne.layers.get_output([self.network[l] for l in ['out', 'img', 'disc']],
input_layers, deterministic=True) input_layers, deterministic=True)
self.predict = theano.function([input_tensor], [gen_out, gen_inp]) self.predict = theano.function([input_tensor], [gen_out, gen_inp]) # disc_out.mean(axis=(1,2,3))
def loss_perceptual(self, p): def loss_perceptual(self, p):
return lasagne.objectives.squared_error(p[:args.batch_size], p[args.batch_size:]).mean() return lasagne.objectives.squared_error(p[:args.batch_size], p[args.batch_size:]).mean()
@ -327,18 +330,17 @@ class NeuralEnhancer(object):
def show_progress(self, repro, orign): def show_progress(self, repro, orign):
for i in range(args.batch_size): for i in range(args.batch_size):
self.imsave('test/%03i_orign.png' % i, orign[i]) self.imsave('valid/%03i_orign.png' % i, orign[i])
self.imsave('test/%03i_repro.png' % i, repro[i]) self.imsave('valid/%03i_repro.png' % i, repro[i])
def train(self): def train(self):
images = np.zeros((args.batch_size, 3, args.batch_resolution, args.batch_resolution), dtype=np.float32) images = np.zeros((args.batch_size, 3, args.batch_resolution, args.batch_resolution), dtype=np.float32)
l_min, l_max, l_mult = 1E-7, 1E-3, 0.2 l_min, l_max, l_mult = 1E-7, 1E-3, 0.2
t_cur, t_i, t_mult = 120, 150, 1 t_cur, t_i, t_mult = 120, 150, 1
i, running = 0, None i, running = 0, None
for _ in range(args.epochs): for k in range(args.epochs):
total = None total, start = None, time.time()
for _ in range(args.epoch_size): for _ in range(args.epoch_size):
i += 1 i += 1
l_r = l_min + 0.5 * (l_max - l_min) * (1.0 + math.cos(t_cur / t_i * math.pi)) l_r = l_min + 0.5 * (l_max - l_min) * (1.0 + math.cos(t_cur / t_i * math.pi))
@ -346,23 +348,28 @@ class NeuralEnhancer(object):
self.model.gen_lr.set_value(l_r) self.model.gen_lr.set_value(l_r)
if t_cur >= t_i: if t_cur >= t_i:
t_cur = 0 t_cur, t_i = 0, int(t_i * t_mult)
t_i = int(t_i * t_mult) l_max = max(l_max * l_mult, 1e-12)
l_max = max(l_max * l_mult, 1e-10) l_min = max(l_min * l_mult, 1e-8)
l_min = max(l_min * l_mult, 1e-6)
self.thread.copy(images) self.thread.copy(images)
losses = np.array(self.model.fit(images), dtype=np.float32) losses = np.array(self.model.fit(images), dtype=np.float32)
total = total + losses if total is not None else losses total = total + losses if total is not None else losses
l = np.sum(losses) l = np.sum(losses)
assert not np.isnan(losses).any()
running = l if running is None else running * 0.9 + 0.1 * l running = l if running is None else running * 0.9 + 0.1 * l
print('' if l > running else '', end=' ', flush=True) print('' if l > running else '', end=' ', flush=True)
self.show_progress(*self.model.predict(images)) repro, orign = self.model.predict(images)
total = total / args.epoch_size self.show_progress(repro, orign)
labels = ['{}={:4.2e}'.format(k, v) for k, v in zip(['prcpt', 'smthn', 'advrs'], total)] total /= args.epoch_size
print('\nLosses: total={:4.2e} {}'.format(sum(total), ' '.join(labels))) totals, labels = [sum(total)] + list(total), ['total', 'prcpt', 'smthn', 'advrs']
losses = ['{}{}{}={:4.2e}'.format(ansi.WHITE_B, k, ansi.ENDC, v) for k, v in zip(labels, totals)]
print('\rEpoch #{} in {:4.1f}s{}'.format(k+1, time.time()-start, ' '*args.epoch_size))
print(' - losses {}\n'.format(' '.join(losses)))
# print(stats[:args.batch_size].mean(), stats[args.batch_size:].mean())
if k == 0: self.model.disc_lr.set_value(l_r)
if k == 1: self.model.adversary_weight.set_value(args.adversary_weight)
if __name__ == "__main__": if __name__ == "__main__":

Loading…
Cancel
Save