|
|
|
|
@ -130,7 +130,10 @@ class DataLoader(threading.Thread):
|
|
|
|
|
self.data_copied = threading.Event()
|
|
|
|
|
|
|
|
|
|
self.resolution = args.batch_resolution
|
|
|
|
|
self.seed_resolution = int(args.batch_resolution / 2**args.scales)
|
|
|
|
|
|
|
|
|
|
self.buffer = np.zeros((args.buffer_size, 3, self.resolution, self.resolution), dtype=np.float32)
|
|
|
|
|
self.seed_buffer = np.zeros((args.buffer_size, 3, self.seed_resolution, self.seed_resolution), dtype=np.float32)
|
|
|
|
|
self.files = glob.glob(args.train)
|
|
|
|
|
if len(self.files) == 0:
|
|
|
|
|
error("There were no files found to train from searching for `{}`".format(args.train),
|
|
|
|
|
@ -168,17 +171,23 @@ class DataLoader(threading.Thread):
|
|
|
|
|
|
|
|
|
|
i = self.available.pop()
|
|
|
|
|
self.buffer[i] = np.transpose(copy / 255.0 - 0.5, (2, 0, 1))
|
|
|
|
|
seed_copy = scipy.misc.imresize(copy,
|
|
|
|
|
size=(self.seed_resolution, self.seed_resolution),
|
|
|
|
|
interp='bilinear')
|
|
|
|
|
self.seed_buffer[i] = np.transpose(seed_copy / 255.0 - 0.5, (2, 0, 1))
|
|
|
|
|
self.ready.add(i)
|
|
|
|
|
|
|
|
|
|
if len(self.ready) >= args.batch_size:
|
|
|
|
|
self.data_ready.set()
|
|
|
|
|
|
|
|
|
|
def copy(self, output):
|
|
|
|
|
def copy(self, images_out, seeds_out):
|
|
|
|
|
self.data_ready.wait()
|
|
|
|
|
self.data_ready.clear()
|
|
|
|
|
|
|
|
|
|
for i, j in enumerate(random.sample(self.ready, args.batch_size)):
|
|
|
|
|
output[i] = self.buffer[j]
|
|
|
|
|
images_out[i] = self.buffer[j]
|
|
|
|
|
seeds_out[i] = self.seed_buffer[j]
|
|
|
|
|
|
|
|
|
|
self.available.add(j)
|
|
|
|
|
|
|
|
|
|
self.data_copied.set()
|
|
|
|
|
@ -212,12 +221,8 @@ class Model(object):
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
self.network = collections.OrderedDict()
|
|
|
|
|
if args.train:
|
|
|
|
|
self.network['img'] = InputLayer((None, 3, None, None))
|
|
|
|
|
self.network['seed'] = PoolLayer(self.network['img'], pool_size=2**args.scales, mode='average_exc_pad')
|
|
|
|
|
else:
|
|
|
|
|
self.network['img'] = InputLayer((None, 3, None, None))
|
|
|
|
|
self.network['seed'] = self.network['img']
|
|
|
|
|
self.network['img'] = InputLayer((None, 3, None, None))
|
|
|
|
|
self.network['seed'] = InputLayer((None, 3, None, None))
|
|
|
|
|
|
|
|
|
|
config, params = self.load_model()
|
|
|
|
|
self.setup_generator(self.last_layer(), config)
|
|
|
|
|
@ -380,9 +385,10 @@ class Model(object):
|
|
|
|
|
def compile(self):
|
|
|
|
|
# Helper function for rendering test images during training, or standalone non-training mode.
|
|
|
|
|
input_tensor = T.tensor4()
|
|
|
|
|
input_layers = {self.network['img']: input_tensor}
|
|
|
|
|
seed_tensor = T.tensor4()
|
|
|
|
|
input_layers = {self.network['img']: input_tensor, self.network['seed']: seed_tensor}
|
|
|
|
|
output = lasagne.layers.get_output([self.network[k] for k in ['img', 'seed', 'out']], input_layers, deterministic=True)
|
|
|
|
|
self.predict = theano.function([input_tensor], output)
|
|
|
|
|
self.predict = theano.function([input_tensor, seed_tensor], output)
|
|
|
|
|
|
|
|
|
|
if not args.train: return
|
|
|
|
|
|
|
|
|
|
@ -408,7 +414,7 @@ class Model(object):
|
|
|
|
|
|
|
|
|
|
# Combined Theano function for updating both generator and discriminator at the same time.
|
|
|
|
|
updates = collections.OrderedDict(list(gen_updates.items()) + list(disc_updates.items()))
|
|
|
|
|
self.fit = theano.function([input_tensor], gen_losses + [disc_out.mean(axis=(1,2,3))], updates=updates)
|
|
|
|
|
self.fit = theano.function([input_tensor, seed_tensor], gen_losses + [disc_out.mean(axis=(1,2,3))], updates=updates)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -449,7 +455,9 @@ class NeuralEnhancer(object):
|
|
|
|
|
if t_cur % args.learning_period == 0: l_r *= args.learning_decay
|
|
|
|
|
|
|
|
|
|
def train(self):
|
|
|
|
|
seed_size = int(args.batch_resolution / 2**args.scales)
|
|
|
|
|
images = np.zeros((args.batch_size, 3, args.batch_resolution, args.batch_resolution), dtype=np.float32)
|
|
|
|
|
seeds = np.zeros((args.batch_size, 3, seed_size, seed_size), dtype=np.float32)
|
|
|
|
|
learning_rate = self.decay_learning_rate()
|
|
|
|
|
try:
|
|
|
|
|
running, start = None, time.time()
|
|
|
|
|
@ -460,8 +468,8 @@ class NeuralEnhancer(object):
|
|
|
|
|
if epoch >= args.discriminator_start: self.model.disc_lr.set_value(l_r)
|
|
|
|
|
|
|
|
|
|
for _ in range(args.epoch_size):
|
|
|
|
|
self.thread.copy(images)
|
|
|
|
|
output = self.model.fit(images)
|
|
|
|
|
self.thread.copy(images, seeds)
|
|
|
|
|
output = self.model.fit(images, seeds)
|
|
|
|
|
losses = np.array(output[:3], dtype=np.float32)
|
|
|
|
|
stats = (stats + output[3]) if stats is not None else output[3]
|
|
|
|
|
total = total + losses if total is not None else losses
|
|
|
|
|
@ -470,7 +478,7 @@ class NeuralEnhancer(object):
|
|
|
|
|
running = l if running is None else running * 0.95 + 0.05 * l
|
|
|
|
|
print('↑' if l > running else '↓', end='', flush=True)
|
|
|
|
|
|
|
|
|
|
orign, scald, repro = self.model.predict(images)
|
|
|
|
|
orign, scald, repro = self.model.predict(images, seeds)
|
|
|
|
|
self.show_progress(orign, scald, repro)
|
|
|
|
|
total /= args.epoch_size
|
|
|
|
|
stats /= args.epoch_size
|
|
|
|
|
@ -498,7 +506,7 @@ class NeuralEnhancer(object):
|
|
|
|
|
|
|
|
|
|
def process(self, image):
|
|
|
|
|
img = np.transpose(image / 255.0 - 0.5, (2, 0, 1))[np.newaxis].astype(np.float32)
|
|
|
|
|
*_, repro = self.model.predict(img)
|
|
|
|
|
*_, repro = self.model.predict(img, img)
|
|
|
|
|
repro = np.transpose(repro[0] + 0.5, (1, 2, 0)).clip(0.0, 1.0)
|
|
|
|
|
return scipy.misc.toimage(repro * 255.0, cmin=0, cmax=255)
|
|
|
|
|
|
|
|
|
|
|