|
|
|
|
@ -151,20 +151,20 @@ criterionCAE1 = nn.SmoothL1Loss()
|
|
|
|
|
|
|
|
|
|
target= torch.FloatTensor(opt.batchSize, outputChannelSize, opt.imageSize, opt.imageSize)
|
|
|
|
|
input = torch.FloatTensor(opt.batchSize, inputChannelSize, opt.imageSize, opt.imageSize)
|
|
|
|
|
target_128= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize/4), (opt.imageSize/4))
|
|
|
|
|
input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize/4), (opt.imageSize/4))
|
|
|
|
|
target_256= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize/2), (opt.imageSize/2))
|
|
|
|
|
input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize/2), (opt.imageSize/2))
|
|
|
|
|
target_128= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize//4), (opt.imageSize//4))
|
|
|
|
|
input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize//4), (opt.imageSize//4))
|
|
|
|
|
target_256= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize//2), (opt.imageSize//2))
|
|
|
|
|
input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize//2), (opt.imageSize//2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
val_target= torch.FloatTensor(opt.valBatchSize, outputChannelSize, opt.imageSize, opt.imageSize)
|
|
|
|
|
val_input = torch.FloatTensor(opt.valBatchSize, inputChannelSize, opt.imageSize, opt.imageSize)
|
|
|
|
|
val_target_128= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize/4), (opt.imageSize/4))
|
|
|
|
|
val_input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize/4), (opt.imageSize/4))
|
|
|
|
|
val_target_256= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize/2), (opt.imageSize/2))
|
|
|
|
|
val_input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize/2), (opt.imageSize/2))
|
|
|
|
|
val_target_128= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize//4), (opt.imageSize//4))
|
|
|
|
|
val_input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize//4), (opt.imageSize//4))
|
|
|
|
|
val_target_256= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize//2), (opt.imageSize//2))
|
|
|
|
|
val_input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize//2), (opt.imageSize//2))
|
|
|
|
|
label_d = torch.FloatTensor(opt.batchSize)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|