diff --git a/train_face_deblur.py b/train_face_deblur.py index ba23490..dfc61f1 100644 --- a/train_face_deblur.py +++ b/train_face_deblur.py @@ -151,20 +151,20 @@ criterionCAE1 = nn.SmoothL1Loss() target= torch.FloatTensor(opt.batchSize, outputChannelSize, opt.imageSize, opt.imageSize) input = torch.FloatTensor(opt.batchSize, inputChannelSize, opt.imageSize, opt.imageSize) -target_128= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize/4), (opt.imageSize/4)) -input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize/4), (opt.imageSize/4)) -target_256= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize/2), (opt.imageSize/2)) -input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize/2), (opt.imageSize/2)) +target_128= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize//4), (opt.imageSize//4)) +input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize//4), (opt.imageSize//4)) +target_256= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize//2), (opt.imageSize//2)) +input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize//2), (opt.imageSize//2)) val_target= torch.FloatTensor(opt.valBatchSize, outputChannelSize, opt.imageSize, opt.imageSize) val_input = torch.FloatTensor(opt.valBatchSize, inputChannelSize, opt.imageSize, opt.imageSize) -val_target_128= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize/4), (opt.imageSize/4)) -val_input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize/4), (opt.imageSize/4)) -val_target_256= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize/2), (opt.imageSize/2)) -val_input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize/2), (opt.imageSize/2)) +val_target_128= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize//4), (opt.imageSize//4)) +val_input_128 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize//4), (opt.imageSize//4)) +val_target_256= torch.FloatTensor(opt.batchSize, outputChannelSize, (opt.imageSize//2), (opt.imageSize//2)) +val_input_256 = torch.FloatTensor(opt.batchSize, inputChannelSize, (opt.imageSize//2), (opt.imageSize//2)) label_d = torch.FloatTensor(opt.batchSize)