|
|
|
|
@ -14,8 +14,9 @@
|
|
|
|
|
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
__version__ = '0.1'
|
|
|
|
|
__version__ = '0.2'
|
|
|
|
|
|
|
|
|
|
import io
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
import bz2
|
|
|
|
|
@ -35,19 +36,26 @@ parser = argparse.ArgumentParser(description='Generate a new image by applying s
|
|
|
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
|
|
|
add_arg = parser.add_argument
|
|
|
|
|
add_arg('files', nargs='*', default=[])
|
|
|
|
|
add_arg('--scales', default=2, type=int, help='How many times to perform 2x upsampling.')
|
|
|
|
|
add_arg('--zoom', default=1, type=int, help='Resolution increase factor for inference.')
|
|
|
|
|
add_arg('--rendering-tile', default=128, type=int, help='Size of tiles used for rendering images.')
|
|
|
|
|
add_arg('--rendering-overlap', default=32, type=int, help='Number of pixels padding around each tile.')
|
|
|
|
|
add_arg('--model', default='small', type=str, help='Name of the neural network to load/save.')
|
|
|
|
|
add_arg('--train', default=False, type=str, help='File pattern to load for training.')
|
|
|
|
|
add_arg('--train-blur', default=None, type=int, help='Sigma value for gaussian blur preprocess.')
|
|
|
|
|
add_arg('--train-noise', default=None, type=float, help='Radius for preprocessing gaussian blur.')
|
|
|
|
|
add_arg('--train-jpeg', default=None, type=int, help='JPEG compression level in preprocessing.')
|
|
|
|
|
add_arg('--epochs', default=10, type=int, help='Total number of iterations in training.')
|
|
|
|
|
add_arg('--epoch-size', default=72, type=int, help='Number of batches trained in an epoch.')
|
|
|
|
|
add_arg('--save-every', default=10, type=int, help='Save generator after every training epoch.')
|
|
|
|
|
add_arg('--batch-shape', default=192, type=int, help='Resolution of images in training batch.')
|
|
|
|
|
add_arg('--batch-size', default=15, type=int, help='Number of images per training batch.')
|
|
|
|
|
add_arg('--batch-size', default=10, type=int, help='Number of images per training batch.')
|
|
|
|
|
add_arg('--buffer-size', default=1500, type=int, help='Total image fragments kept in cache.')
|
|
|
|
|
add_arg('--buffer-similar', default=5, type=int, help='Fragments cached for each image loaded.')
|
|
|
|
|
add_arg('--learning-rate', default=1E-4, type=float, help='Parameter for the ADAM optimizer.')
|
|
|
|
|
add_arg('--learning-period', default=50, type=int, help='How often to decay the learning rate.')
|
|
|
|
|
add_arg('--learning-rate', default=5E-4, type=float, help='Parameter for the ADAM optimizer.')
|
|
|
|
|
add_arg('--learning-period', default=100, type=int, help='How often to decay the learning rate.')
|
|
|
|
|
add_arg('--learning-decay', default=0.5, type=float, help='How much to decay the learning rate.')
|
|
|
|
|
add_arg('--generator-upscale', default=2, type=int, help='Steps of 2x up-sampling as post-process.')
|
|
|
|
|
add_arg('--generator-downscale',default=0, type=int, help='Steps of 2x down-sampling as preprocess.')
|
|
|
|
|
add_arg('--generator-filters', default=[64], nargs='+', type=int, help='Number of convolution units in network.')
|
|
|
|
|
add_arg('--generator-blocks', default=4, type=int, help='Number of residual blocks per iteration.')
|
|
|
|
|
add_arg('--generator-residual', default=2, type=int, help='Number of layers in a residual block.')
|
|
|
|
|
@ -55,7 +63,7 @@ add_arg('--perceptual-layer', default='conv2_2', type=str, help='Which
|
|
|
|
|
add_arg('--perceptual-weight', default=1e0, type=float, help='Weight for VGG-layer perceptual loss.')
|
|
|
|
|
add_arg('--discriminator-size', default=32, type=int, help='Multiplier for number of filters in D.')
|
|
|
|
|
add_arg('--smoothness-weight', default=2e5, type=float, help='Weight of the total-variation loss.')
|
|
|
|
|
add_arg('--adversary-weight', default=1e2, type=float, help='Weight of adversarial loss compoment.')
|
|
|
|
|
add_arg('--adversary-weight', default=5e2, type=float, help='Weight of adversarial loss compoment.')
|
|
|
|
|
add_arg('--generator-start', default=0, type=int, help='Epoch count to start training generator.')
|
|
|
|
|
add_arg('--discriminator-start',default=1, type=int, help='Epoch count to update the discriminator.')
|
|
|
|
|
add_arg('--adversarial-start', default=2, type=int, help='Epoch for generator to use discriminator.')
|
|
|
|
|
@ -100,11 +108,10 @@ os.environ.setdefault('THEANO_FLAGS', 'floatX=float32,device={},force_device=Tru
|
|
|
|
|
|
|
|
|
|
# Scientific & Imaging Libraries
|
|
|
|
|
import numpy as np
|
|
|
|
|
import scipy.optimize, scipy.ndimage, scipy.misc
|
|
|
|
|
import scipy.ndimage, scipy.misc, PIL.Image
|
|
|
|
|
|
|
|
|
|
# Numeric Computing (GPU)
|
|
|
|
|
import theano
|
|
|
|
|
import theano.tensor as T
|
|
|
|
|
import theano, theano.tensor as T
|
|
|
|
|
T.nnet.softminus = lambda x: x - T.nnet.softplus(x)
|
|
|
|
|
|
|
|
|
|
# Support ansi colors in Windows too.
|
|
|
|
|
@ -129,7 +136,7 @@ class DataLoader(threading.Thread):
|
|
|
|
|
self.data_ready = threading.Event()
|
|
|
|
|
self.data_copied = threading.Event()
|
|
|
|
|
|
|
|
|
|
self.orig_shape, self.seed_shape = args.batch_shape, int(args.batch_shape / 2**args.scales)
|
|
|
|
|
self.orig_shape, self.seed_shape = args.batch_shape, int(args.batch_shape / args.zoom)
|
|
|
|
|
|
|
|
|
|
self.orig_buffer = np.zeros((args.buffer_size, 3, self.orig_shape, self.orig_shape), dtype=np.float32)
|
|
|
|
|
self.seed_buffer = np.zeros((args.buffer_size, 3, self.seed_shape, self.seed_shape), dtype=np.float32)
|
|
|
|
|
@ -147,35 +154,55 @@ class DataLoader(threading.Thread):
|
|
|
|
|
def run(self):
|
|
|
|
|
while True:
|
|
|
|
|
random.shuffle(self.files)
|
|
|
|
|
|
|
|
|
|
for f in self.files:
|
|
|
|
|
filename = os.path.join(self.cwd, f)
|
|
|
|
|
try:
|
|
|
|
|
img = scipy.ndimage.imread(filename, mode='RGB')
|
|
|
|
|
except Exception as e:
|
|
|
|
|
warn('Could not load `{}` as image.'.format(filename),
|
|
|
|
|
' - Try fixing or removing the file before next run.')
|
|
|
|
|
files.remove(f)
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
for _ in range(args.buffer_similar):
|
|
|
|
|
copy = img[:,::-1] if random.choice([True, False]) else img
|
|
|
|
|
h = random.randint(0, copy.shape[0] - self.orig_shape)
|
|
|
|
|
w = random.randint(0, copy.shape[1] - self.orig_shape)
|
|
|
|
|
copy = copy[h:h+self.orig_shape, w:w+self.orig_shape]
|
|
|
|
|
|
|
|
|
|
while len(self.available) == 0:
|
|
|
|
|
self.data_copied.wait()
|
|
|
|
|
self.data_copied.clear()
|
|
|
|
|
|
|
|
|
|
i = self.available.pop()
|
|
|
|
|
self.orig_buffer[i] = np.transpose(copy / 255.0 - 0.5, (2, 0, 1))
|
|
|
|
|
seed = scipy.misc.imresize(copy, size=(self.seed_shape, self.seed_shape), interp='bilinear')
|
|
|
|
|
self.seed_buffer[i] = np.transpose(seed / 255.0 - 0.5, (2, 0, 1))
|
|
|
|
|
self.ready.add(i)
|
|
|
|
|
|
|
|
|
|
if len(self.ready) >= args.batch_size:
|
|
|
|
|
self.data_ready.set()
|
|
|
|
|
self.add_to_buffer(f)
|
|
|
|
|
|
|
|
|
|
def add_to_buffer(self, f):
|
|
|
|
|
filename = os.path.join(self.cwd, f)
|
|
|
|
|
try:
|
|
|
|
|
orig = PIL.Image.open(filename).convert('RGB')
|
|
|
|
|
# if all(s > args.batch_shape * 2 for s in orig.size):
|
|
|
|
|
# orig = orig.resize((orig.size[0]//2, orig.size[1]//2), resample=PIL.Image.LANCZOS)
|
|
|
|
|
if any(s < args.batch_shape for s in orig.size):
|
|
|
|
|
raise ValueError('Image is too small for training with size {}'.format(orig.size))
|
|
|
|
|
except Exception as e:
|
|
|
|
|
warn('Could not load `{}` as image.'.format(filename),
|
|
|
|
|
' - Try fixing or removing the file before next run.')
|
|
|
|
|
self.files.remove(f)
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
seed = orig.filter(PIL.ImageFilter.GaussianBlur(radius=args.train_blur)) if args.train_blur else orig
|
|
|
|
|
seed = seed.resize((orig.size[0]//args.zoom, orig.size[1]//args.zoom), resample=PIL.Image.LANCZOS)
|
|
|
|
|
|
|
|
|
|
if args.train_jpeg:
|
|
|
|
|
buffer = io.BytesIO()
|
|
|
|
|
seed.save(buffer, format='jpeg', quality=args.train_jpeg+random.randrange(-15,+15))
|
|
|
|
|
seed = PIL.Image.open(buffer)
|
|
|
|
|
|
|
|
|
|
seed = scipy.misc.fromimage(seed, mode='RGB').astype(np.float32)
|
|
|
|
|
seed += scipy.random.normal(scale=args.train_noise, size=(seed.shape[0], seed.shape[1], 1))\
|
|
|
|
|
if args.train_noise else 0.0
|
|
|
|
|
|
|
|
|
|
orig = scipy.misc.fromimage(orig).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
for _ in range(args.buffer_similar):
|
|
|
|
|
h = random.randint(0, seed.shape[0] - self.seed_shape)
|
|
|
|
|
w = random.randint(0, seed.shape[1] - self.seed_shape)
|
|
|
|
|
seed_chunk = seed[h:h+self.seed_shape, w:w+self.seed_shape]
|
|
|
|
|
h, w = h * args.zoom, w * args.zoom
|
|
|
|
|
orig_chunk = orig[h:h+self.orig_shape, w:w+self.orig_shape]
|
|
|
|
|
|
|
|
|
|
while len(self.available) == 0:
|
|
|
|
|
self.data_copied.wait()
|
|
|
|
|
self.data_copied.clear()
|
|
|
|
|
|
|
|
|
|
i = self.available.pop()
|
|
|
|
|
self.orig_buffer[i] = np.transpose(orig_chunk.astype(np.float32) / 127.5 - 1.0, (2, 0, 1))
|
|
|
|
|
self.seed_buffer[i] = np.transpose(seed_chunk.astype(np.float32) / 127.5 - 1.0, (2, 0, 1))
|
|
|
|
|
self.ready.add(i)
|
|
|
|
|
|
|
|
|
|
if len(self.ready) >= args.batch_size:
|
|
|
|
|
self.data_ready.set()
|
|
|
|
|
|
|
|
|
|
def copy(self, origs_out, seeds_out):
|
|
|
|
|
self.data_ready.wait()
|
|
|
|
|
@ -184,9 +211,7 @@ class DataLoader(threading.Thread):
|
|
|
|
|
for i, j in enumerate(random.sample(self.ready, args.batch_size)):
|
|
|
|
|
origs_out[i] = self.orig_buffer[j]
|
|
|
|
|
seeds_out[i] = self.seed_buffer[j]
|
|
|
|
|
|
|
|
|
|
self.available.add(j)
|
|
|
|
|
|
|
|
|
|
self.data_copied.set()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -214,6 +239,34 @@ class SubpixelReshuffleLayer(lasagne.layers.Layer):
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ReflectLayer(lasagne.layers.Layer):
|
|
|
|
|
"""Based on more code by ajbrock: https://gist.github.com/ajbrock/a3858c26282d9731191901b397b3ce9f
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, incoming, pad, batch_ndim=2, **kwargs):
|
|
|
|
|
super(ReflectLayer, self).__init__(incoming, **kwargs)
|
|
|
|
|
self.pad = (pad, pad)
|
|
|
|
|
self.batch_ndim = batch_ndim
|
|
|
|
|
|
|
|
|
|
def get_output_shape_for(self, input_shape):
|
|
|
|
|
output_shape = list(input_shape)
|
|
|
|
|
for k, p in enumerate(self.pad):
|
|
|
|
|
if output_shape[k + self.batch_ndim] is None: continue
|
|
|
|
|
l, r = p, p
|
|
|
|
|
output_shape[k + self.batch_ndim] += l + r
|
|
|
|
|
return tuple(output_shape)
|
|
|
|
|
|
|
|
|
|
def get_output_for(self, x, **kwargs):
|
|
|
|
|
out = T.zeros(self.get_output_shape_for(x.shape))
|
|
|
|
|
p0, p1 = self.pad
|
|
|
|
|
out = T.set_subtensor(out[:,:,:p0,p1:-p1], x[:,:,p0:0:-1,:])
|
|
|
|
|
out = T.set_subtensor(out[:,:,-p0:,p1:-p1], x[:,:,-2:-(2+p0):-1,:])
|
|
|
|
|
out = T.set_subtensor(out[:,:,p0:-p0,p1:-p1], x)
|
|
|
|
|
out = T.set_subtensor(out[:,:,:,:p1], out[:,:,:,(2*p1):p1:-1])
|
|
|
|
|
out = T.set_subtensor(out[:,:,:,-p1:], out[:,:,:,-(p1+2):-(2*p1+2):-1])
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Model(object):
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
@ -230,7 +283,6 @@ class Model(object):
|
|
|
|
|
self.load_perceptual()
|
|
|
|
|
self.setup_discriminator()
|
|
|
|
|
self.load_generator(params)
|
|
|
|
|
|
|
|
|
|
self.compile()
|
|
|
|
|
|
|
|
|
|
#------------------------------------------------------------------------------------------------------------------
|
|
|
|
|
@ -241,7 +293,8 @@ class Model(object):
|
|
|
|
|
return list(self.network.values())[-1]
|
|
|
|
|
|
|
|
|
|
def make_layer(self, name, input, units, filter_size=(3,3), stride=(1,1), pad=(1,1), alpha=0.25):
|
|
|
|
|
conv = ConvLayer(input, units, filter_size=filter_size, stride=stride, pad=pad, nonlinearity=None)
|
|
|
|
|
reflected = ReflectLayer(input, pad=pad[0]) if pad[0] > 0 else input
|
|
|
|
|
conv = ConvLayer(reflected, units, filter_size, stride=stride, pad=(0,0), nonlinearity=None)
|
|
|
|
|
prelu = lasagne.layers.ParametricRectifierLayer(conv, alpha=lasagne.init.Constant(alpha))
|
|
|
|
|
self.network[name+'x'] = conv
|
|
|
|
|
self.network[name+'>'] = prelu
|
|
|
|
|
@ -254,30 +307,35 @@ class Model(object):
|
|
|
|
|
|
|
|
|
|
def setup_generator(self, input, config):
|
|
|
|
|
for k, v in config.items(): setattr(args, k, v)
|
|
|
|
|
args.zoom = 2**(args.generator_upscale - args.generator_downscale)
|
|
|
|
|
|
|
|
|
|
units_iter = extend(args.generator_filters)
|
|
|
|
|
units = next(units_iter)
|
|
|
|
|
self.make_layer('iter.0-A', input, units, filter_size=(5,5), pad=(2,2))
|
|
|
|
|
self.make_layer('iter.0-B', self.last_layer(), units, filter_size=(5,5), pad=(2,2))
|
|
|
|
|
self.network['iter.0'] = self.last_layer()
|
|
|
|
|
|
|
|
|
|
for i in range(0, args.generator_downscale):
|
|
|
|
|
self.make_layer('downscale%i'%i, self.last_layer(), next(units_iter), filter_size=(4,4), stride=(2,2))
|
|
|
|
|
|
|
|
|
|
units = next(units_iter)
|
|
|
|
|
for i in range(0, args.generator_blocks):
|
|
|
|
|
self.make_block('iter.%i'%(i+1), self.last_layer(), units)
|
|
|
|
|
|
|
|
|
|
for i in range(0, args.scales):
|
|
|
|
|
for i in range(0, args.generator_upscale):
|
|
|
|
|
u = next(units_iter)
|
|
|
|
|
self.make_layer('scale%i.3'%i, self.last_layer(), u*4)
|
|
|
|
|
self.network['scale%i.2'%i] = SubpixelReshuffleLayer(self.last_layer(), u, 2)
|
|
|
|
|
self.make_layer('scale%i.1'%i, self.last_layer(), u)
|
|
|
|
|
self.make_layer('upscale%i.3'%i, self.last_layer(), u*4)
|
|
|
|
|
self.network['upscale%i.2'%i] = SubpixelReshuffleLayer(self.last_layer(), u, 2)
|
|
|
|
|
self.make_layer('upscale%i.1'%i, self.last_layer(), u)
|
|
|
|
|
|
|
|
|
|
self.network['out'] = ConvLayer(self.last_layer(), 3, filter_size=(5,5), stride=(1,1), pad=(2,2),
|
|
|
|
|
self.network['out'] = ConvLayer(self.last_layer(), 3, filter_size=(3,3), stride=(1,1), pad=(1,1),
|
|
|
|
|
nonlinearity=lasagne.nonlinearities.tanh)
|
|
|
|
|
|
|
|
|
|
def setup_perceptual(self, input):
|
|
|
|
|
"""Use lasagne to create a network of convolution layers using pre-trained VGG19 weights.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
offset = np.array([103.939, 116.779, 123.680], dtype=np.float32).reshape((1,3,1,1))
|
|
|
|
|
self.network['percept'] = lasagne.layers.NonlinearityLayer(input, lambda x: ((x+0.5).clip(0.0, 1.0)*255.0) - offset)
|
|
|
|
|
self.network['percept'] = lasagne.layers.NonlinearityLayer(input, lambda x: ((x+1.0)*127.5) - offset)
|
|
|
|
|
|
|
|
|
|
self.network['mse'] = self.network['percept']
|
|
|
|
|
self.network['conv1_1'] = ConvLayer(self.network['percept'], 64, 3, pad=1)
|
|
|
|
|
@ -340,13 +398,14 @@ class Model(object):
|
|
|
|
|
def save_generator(self):
|
|
|
|
|
def cast(p): return p.get_value().astype(np.float16)
|
|
|
|
|
params = {k: [cast(p) for p in l.get_params()] for (k, l) in self.list_generator_layers()}
|
|
|
|
|
config = {k: getattr(args, k) for k in ['generator_blocks', 'generator_residual', 'generator_filters']}
|
|
|
|
|
filename = 'ne%ix-%s-%s.pkl.bz2' % (2**args.scales, args.model, __version__)
|
|
|
|
|
config = {k: getattr(args, k) for k in ['generator_blocks', 'generator_residual', 'generator_filters'] + \
|
|
|
|
|
['generator_upscale', 'generator_downscale']}
|
|
|
|
|
filename = 'ne%ix-%s-%s.pkl.bz2' % (args.zoom, args.model, __version__)
|
|
|
|
|
pickle.dump((config, params), bz2.open(filename, 'wb'))
|
|
|
|
|
print(' - Saved model as `{}` after training.'.format(filename))
|
|
|
|
|
|
|
|
|
|
def load_model(self):
|
|
|
|
|
filename = 'ne%ix-%s-%s.pkl.bz2' % (2**args.scales, args.model, __version__)
|
|
|
|
|
filename = 'ne%ix-%s-%s.pkl.bz2' % (args.zoom, args.model, __version__)
|
|
|
|
|
if not os.path.exists(filename):
|
|
|
|
|
if args.train: return {}, {}
|
|
|
|
|
error("Model file with pre-trained convolution layers not found. Download it here...",
|
|
|
|
|
@ -380,10 +439,10 @@ class Model(object):
|
|
|
|
|
return T.mean(T.nnet.softminus(d[args.batch_size:]) - T.nnet.softplus(d[:args.batch_size]))
|
|
|
|
|
|
|
|
|
|
def compile(self):
|
|
|
|
|
# Helper function for rendering test images during training, or standalone non-training mode.
|
|
|
|
|
# Helper function for rendering test images during training, or standalone inference mode.
|
|
|
|
|
input_tensor, seed_tensor = T.tensor4(), T.tensor4()
|
|
|
|
|
input_layers = {self.network['img']: input_tensor, self.network['seed']: seed_tensor}
|
|
|
|
|
output = lasagne.layers.get_output([self.network[k] for k in ['seed', 'out']], input_layers, deterministic=True)
|
|
|
|
|
output = lasagne.layers.get_output([self.network[k] for k in ['seed','out']], input_layers, deterministic=True)
|
|
|
|
|
self.predict = theano.function([seed_tensor], output)
|
|
|
|
|
|
|
|
|
|
if not args.train: return
|
|
|
|
|
@ -406,7 +465,8 @@ class Model(object):
|
|
|
|
|
disc_losses = [self.loss_discriminator(disc_out)]
|
|
|
|
|
disc_params = list(itertools.chain(*[l.get_params() for k, l in self.network.items() if 'disc' in k]))
|
|
|
|
|
print(' - {} tensors learned for discriminator.'.format(len(disc_params)))
|
|
|
|
|
disc_updates = lasagne.updates.adam(sum(disc_losses, 0.0), disc_params, learning_rate=self.disc_lr)
|
|
|
|
|
grads = [g.clip(-5.0, +5.0) for g in T.grad(sum(disc_losses, 0.0), disc_params)]
|
|
|
|
|
disc_updates = lasagne.updates.adam(grads, disc_params, learning_rate=self.disc_lr)
|
|
|
|
|
|
|
|
|
|
# Combined Theano function for updating both generator and discriminator at the same time.
|
|
|
|
|
updates = collections.OrderedDict(list(gen_updates.items()) + list(disc_updates.items()))
|
|
|
|
|
@ -416,7 +476,7 @@ class Model(object):
|
|
|
|
|
|
|
|
|
|
class NeuralEnhancer(object):
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
def __init__(self, loader):
|
|
|
|
|
if args.train:
|
|
|
|
|
print('{}Training {} epochs on random image sections with batch size {}.{}'\
|
|
|
|
|
.format(ansi.BLUE_B, args.epochs, args.batch_size, ansi.BLUE))
|
|
|
|
|
@ -425,33 +485,31 @@ class NeuralEnhancer(object):
|
|
|
|
|
print('{}Enhancing {} image(s) specified on the command-line.{}'\
|
|
|
|
|
.format(ansi.BLUE_B, len(args.files), ansi.BLUE))
|
|
|
|
|
|
|
|
|
|
self.thread = DataLoader() if args.train else None
|
|
|
|
|
self.thread = DataLoader() if loader else None
|
|
|
|
|
self.model = Model()
|
|
|
|
|
|
|
|
|
|
print('{}'.format(ansi.ENDC))
|
|
|
|
|
|
|
|
|
|
def imsave(self, fn, img):
|
|
|
|
|
img = np.transpose(img + 0.5, (1, 2, 0)).clip(0.0, 1.0)
|
|
|
|
|
image = scipy.misc.toimage(img * 255.0, cmin=0, cmax=255)
|
|
|
|
|
image.save(fn)
|
|
|
|
|
scipy.misc.toimage(np.transpose(img + 1.0, (1, 2, 0)) * 127.5, cmin=0, cmax=255).save(fn)
|
|
|
|
|
|
|
|
|
|
def show_progress(self, orign, scald, repro):
|
|
|
|
|
os.makedirs('valid', exist_ok=True)
|
|
|
|
|
for i in range(args.batch_size):
|
|
|
|
|
self.imsave('valid/%03i_origin.png' % i, orign[i])
|
|
|
|
|
self.imsave('valid/%03i_pixels.png' % i, scald[i])
|
|
|
|
|
self.imsave('valid/%03i_reprod.png' % i, repro[i])
|
|
|
|
|
self.imsave('valid/%s_%03i_origin.png' % (args.model, i), orign[i])
|
|
|
|
|
self.imsave('valid/%s_%03i_pixels.png' % (args.model, i), scald[i])
|
|
|
|
|
self.imsave('valid/%s_%03i_reprod.png' % (args.model, i), repro[i])
|
|
|
|
|
|
|
|
|
|
def decay_learning_rate(self):
|
|
|
|
|
l_r, t_cur = args.learning_rate, 0
|
|
|
|
|
|
|
|
|
|
while True:
|
|
|
|
|
yield l_r if t_cur > 0 else l_r * 0.1
|
|
|
|
|
yield l_r
|
|
|
|
|
t_cur += 1
|
|
|
|
|
if t_cur % args.learning_period == 0: l_r *= args.learning_decay
|
|
|
|
|
|
|
|
|
|
def train(self):
|
|
|
|
|
seed_size = int(args.batch_shape / 2**args.scales)
|
|
|
|
|
seed_size = args.batch_shape // args.zoom
|
|
|
|
|
images = np.zeros((args.batch_size, 3, args.batch_shape, args.batch_shape), dtype=np.float32)
|
|
|
|
|
seeds = np.zeros((args.batch_size, 3, seed_size, seed_size), dtype=np.float32)
|
|
|
|
|
learning_rate = self.decay_learning_rate()
|
|
|
|
|
@ -480,11 +538,12 @@ class NeuralEnhancer(object):
|
|
|
|
|
stats /= args.epoch_size
|
|
|
|
|
totals, labels = [sum(total)] + list(total), ['total', 'prcpt', 'smthn', 'advrs']
|
|
|
|
|
gen_info = ['{}{}{}={:4.2e}'.format(ansi.WHITE_B, k, ansi.ENDC, v) for k, v in zip(labels, totals)]
|
|
|
|
|
print('\rEpoch #{} at {:4.1f}s, lr={:4.2e} {}'.format(epoch+1, time.time()-start, l_r, ' '*args.epoch_size))
|
|
|
|
|
print('\rEpoch #{} at {:4.1f}s, lr={:4.2e}{}'.format(epoch+1, time.time()-start, l_r, ' '*(args.epoch_size-30)))
|
|
|
|
|
print(' - generator {}'.format(' '.join(gen_info)))
|
|
|
|
|
|
|
|
|
|
real, fake = stats[:args.batch_size], stats[args.batch_size:]
|
|
|
|
|
print(' - discriminator', real.mean(), len(np.where(real > 0.5)[0]), fake.mean(), len(np.where(fake < -0.5)[0]))
|
|
|
|
|
print(' - discriminator', real.mean(), len(np.where(real > 0.5)[0]),
|
|
|
|
|
fake.mean(), len(np.where(fake < -0.5)[0]))
|
|
|
|
|
if epoch == args.adversarial_start-1:
|
|
|
|
|
print(' - generator now optimizing against discriminator.')
|
|
|
|
|
self.model.adversary_weight.set_value(args.adversary_weight)
|
|
|
|
|
@ -497,31 +556,33 @@ class NeuralEnhancer(object):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
print('\n{}Trained {}x super-resolution for {} epochs.{}'\
|
|
|
|
|
.format(ansi.CYAN_B, 2**args.scales, epoch+1, ansi.CYAN))
|
|
|
|
|
.format(ansi.CYAN_B, args.zoom, epoch+1, ansi.CYAN))
|
|
|
|
|
self.model.save_generator()
|
|
|
|
|
print(ansi.ENDC)
|
|
|
|
|
|
|
|
|
|
def process(self, image):
|
|
|
|
|
img = np.transpose(image / 255.0 - 0.5, (2, 0, 1))[np.newaxis].astype(np.float32)
|
|
|
|
|
*_, repro = self.model.predict(img)
|
|
|
|
|
repro = np.transpose(repro[0] + 0.5, (1, 2, 0)).clip(0.0, 1.0)
|
|
|
|
|
return scipy.misc.toimage(repro * 255.0, cmin=0, cmax=255)
|
|
|
|
|
def process(self, original):
|
|
|
|
|
s, p, z = args.rendering_tile, args.rendering_overlap, args.zoom
|
|
|
|
|
image = np.pad(original, ((p*z, p*z), (p*z, p*z), (0, 0)), mode='reflect')
|
|
|
|
|
output = np.zeros((original.shape[0] * z, original.shape[1] * z, 3), dtype=np.float32)
|
|
|
|
|
for y, x in itertools.product(range(0, original.shape[0], s), range(0, original.shape[1], s)):
|
|
|
|
|
img = np.transpose(image[y:y+p*2+s,x:x+p*2+s,:] / 127.5 - 1.0, (2, 0, 1))[np.newaxis].astype(np.float32)
|
|
|
|
|
*_, repro = self.model.predict(img)
|
|
|
|
|
output[y*z:(y+s)*z,x*z:(x+s)*z,:] = np.transpose(repro[0] + 1.0, (1, 2, 0))[p*z:-p*z,p*z:-p*z,:]
|
|
|
|
|
print('.', end='', flush=True)
|
|
|
|
|
return scipy.misc.toimage(output * 127.5, cmin=0, cmax=255)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
enhancer = NeuralEnhancer()
|
|
|
|
|
|
|
|
|
|
if args.train:
|
|
|
|
|
args.zoom = 2**(args.generator_upscale - args.generator_downscale)
|
|
|
|
|
enhancer = NeuralEnhancer(loader=True)
|
|
|
|
|
enhancer.train()
|
|
|
|
|
else:
|
|
|
|
|
enhancer = NeuralEnhancer(loader=False)
|
|
|
|
|
for filename in args.files:
|
|
|
|
|
print(filename)
|
|
|
|
|
print(filename, end=' ')
|
|
|
|
|
img = scipy.ndimage.imread(filename, mode='RGB')
|
|
|
|
|
if img.shape[0] * img.shape[1] > 256 ** 2 and args.scales >= 2:
|
|
|
|
|
error('This file is (probably) too large to process in one shot and was ignored.',
|
|
|
|
|
' - Until tiled rendering is added, edit this code at your own peril!')
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
out = enhancer.process(img)
|
|
|
|
|
out.save(os.path.splitext(filename)[0]+'_ne%ix.png'%(2**args.scales))
|
|
|
|
|
out.save(os.path.splitext(filename)[0]+'_ne%ix.png' % args.zoom)
|
|
|
|
|
print(flush=True)
|
|
|
|
|
print(ansi.ENDC)
|
|
|
|
|
|