Fix and optimize pre-processing of images.

main
Alex J. Champandard 9 years ago
parent 11ba505252
commit 93e5a41d9a

@ -39,8 +39,8 @@ add_arg('files', nargs='*', default=[])
add_arg('--zoom', default=4, type=int, help='Resolution increase factor for inference.')
add_arg('--model', default='small', type=str, help='Name of the neural network to load/save.')
add_arg('--train', default=False, type=str, help='File pattern to load for training.')
add_arg('--train-blur', default=None, type=float, help='Sigma value for gaussian blur preprocess.')
add_arg('--train-noise', default=None, type=float, help='Sigma of normal distribution in preproc.')
add_arg('--train-blur', default=None, type=int, help='Sigma value for gaussian blur preprocess.')
add_arg('--train-noise', default=None, type=float, help='Radius for preprocessing gaussian blur.')
add_arg('--train-jpeg', default=None, type=int, help='JPEG compression level in preprocessing.')
add_arg('--epochs', default=10, type=int, help='Total number of iterations in training.')
add_arg('--epoch-size', default=72, type=int, help='Number of batches trained in an epoch.')
@ -158,8 +158,10 @@ class DataLoader(threading.Thread):
def add_to_buffer(self, f):
filename = os.path.join(self.cwd, f)
try:
img = scipy.ndimage.imread(filename, mode='RGB').astype(np.float32)
if img.shape[0] < args.batch_shape or img.shape[1] < args.batch_shape:
orig = PIL.Image.open(filename).convert('RGB')
if all(s > args.batch_shape * 2 for s in orig.size):
orig = orig.resize((orig.size[0]//2, orig.size[1]//2), resample=PIL.Image.LANCZOS)
if any(s < args.batch_shape * 2 for s in orig.size):
raise ValueError('Image is too small for training with size {}'.format(img.shape))
except Exception as e:
warn('Could not load `{}` as image.'.format(filename),
@ -167,28 +169,35 @@ class DataLoader(threading.Thread):
self.files.remove(f)
return
img = scipy.ndimage.gaussian_blur(img, sigma=args.train_blur) if args.train_blur else img
img += scipy.random.normal(scale=args.train_noise) if args.train_noise else 0.0
seed = orig.filter(PIL.ImageFilter.GaussianBlur(radius=args.train_blur)) if args.train_blur else orig
seed = seed.resize((orig.size[0]//args.zoom, orig.size[1]//args.zoom), resample=PIL.Image.LANCZOS)
seed = scipy.misc.fromimage(seed).astype(np.float32)
seed += scipy.random.normal(scale=args.train_noise, size=(seed.shape[0], seed.shape[1], 1)) if args.train_noise else 0.0
"""
if args.train_jpeg:
buffer = io.BytesIO()
scipy.misc.toimage(img, cmin=0, cmax=255).save(buffer, format='jpeg', quality=args.train_jpeg)
scipy.misc.toimage(seed, cmin=0, cmax=255).save(buffer, format='jpeg', quality=args.train_jpeg)
with PIL.Image.open(buffer) as compressed:
img = scipy.misc.fromimage(compressed, mode='RGB')
"""
orig = scipy.misc.fromimage(orig).astype(np.float32)
for _ in range(args.buffer_similar):
copy = img[:,::-1] if random.choice([True, False]) else img
h = random.randint(0, copy.shape[0] - self.orig_shape)
w = random.randint(0, copy.shape[1] - self.orig_shape)
copy = copy[h:h+self.orig_shape, w:w+self.orig_shape]
h = random.randint(0, seed.shape[0] - self.seed_shape)
w = random.randint(0, seed.shape[1] - self.seed_shape)
seed_chunk = seed[h:h+self.seed_shape, w:w+self.seed_shape]
h, w = h * args.zoom, w * args.zoom
orig_chunk = orig[h:h+self.orig_shape, w:w+self.orig_shape]
while len(self.available) == 0:
self.data_copied.wait()
self.data_copied.clear()
i = self.available.pop()
self.orig_buffer[i] = np.transpose(copy / 127.5 - 1.0, (2, 0, 1))
seed = scipy.misc.imresize(copy, size=(self.seed_shape, self.seed_shape), interp='bilinear')
self.seed_buffer[i] = np.transpose(seed / 127.5 - 1.0, (2, 0, 1))
self.orig_buffer[i] = np.transpose(orig_chunk.astype(np.float32) / 127.5 - 1.0, (2, 0, 1))
self.seed_buffer[i] = np.transpose(seed_chunk.astype(np.float32) / 127.5 - 1.0, (2, 0, 1))
self.ready.add(i)
if len(self.ready) >= args.batch_size:
@ -399,7 +408,7 @@ class Model(object):
return T.mean(1.0 - T.nnet.softplus(d[args.batch_size:]))
def loss_discriminator(self, d):
return T.mean(T.nnet.softplus(d[:args.batch_size]) - T.nnet.softminus(d[args.batch_size:]))
return T.mean(T.nnet.softminus(d[args.batch_size:]) - T.nnet.softplus(d[:args.batch_size]))
def compile(self):
# Helper function for rendering test images during training, or standalone non-training mode.
@ -454,9 +463,7 @@ class NeuralEnhancer(object):
print('{}'.format(ansi.ENDC))
def imsave(self, fn, img):
img = np.transpose(img + 1.0, (1, 2, 0)).clip(0.0, 1.0)
image = scipy.misc.toimage(img * 127.5, cmin=0, cmax=255)
image.save(fn)
scipy.misc.toimage(np.transpose(img + 1.0, (1, 2, 0)) * 127.5, cmin=0, cmax=255).save(fn)
def show_progress(self, orign, scald, repro):
os.makedirs('valid', exist_ok=True)
@ -503,7 +510,7 @@ class NeuralEnhancer(object):
stats /= args.epoch_size
totals, labels = [sum(total)] + list(total), ['total', 'prcpt', 'smthn', 'advrs']
gen_info = ['{}{}{}={:4.2e}'.format(ansi.WHITE_B, k, ansi.ENDC, v) for k, v in zip(labels, totals)]
print('\rEpoch #{} at {:4.1f}s, lr={:4.2e} {}'.format(epoch+1, time.time()-start, l_r, ' '*args.epoch_size))
print('\rEpoch #{} at {:4.1f}s, lr={:4.2e}{}'.format(epoch+1, time.time()-start, l_r, ' '*(args.epoch_size-60)))
print(' - generator {}'.format(' '.join(gen_info)))
real, fake = stats[:args.batch_size], stats[args.batch_size:]
@ -547,5 +554,5 @@ if __name__ == "__main__":
continue
out = enhancer.process(img)
out.save(os.path.splitext(filename)[0]+'_ne%ix.png'%args.zoom)
out.save(os.path.splitext(filename)[0]+'_ne%ix.png' % args.zoom)
print(ansi.ENDC)

Loading…
Cancel
Save