diff --git a/enhance.py b/enhance.py index 2662ebb..882fa68 100755 --- a/enhance.py +++ b/enhance.py @@ -14,7 +14,7 @@ # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # -__version__ = '0.1' +__version__ = '0.2' import io import os @@ -159,10 +159,10 @@ class DataLoader(threading.Thread): filename = os.path.join(self.cwd, f) try: orig = PIL.Image.open(filename).convert('RGB') - if all(s > args.batch_shape * 2 for s in orig.size): - orig = orig.resize((orig.size[0]//2, orig.size[1]//2), resample=PIL.Image.LANCZOS) - if any(s < args.batch_shape * 2 for s in orig.size): - raise ValueError('Image is too small for training with size {}'.format(img.shape)) + # if all(s > args.batch_shape * 2 for s in orig.size): + # orig = orig.resize((orig.size[0]//2, orig.size[1]//2), resample=PIL.Image.LANCZOS) + if any(s < args.batch_shape for s in orig.size): + raise ValueError('Image is too small for training with size {}'.format(orig.size)) except Exception as e: warn('Could not load `{}` as image.'.format(filename), ' - Try fixing or removing the file before next run.') @@ -468,9 +468,9 @@ class NeuralEnhancer(object): def show_progress(self, orign, scald, repro): os.makedirs('valid', exist_ok=True) for i in range(args.batch_size): - self.imsave('valid/%03i_origin.png' % i, orign[i]) - self.imsave('valid/%03i_pixels.png' % i, scald[i]) - self.imsave('valid/%03i_reprod.png' % i, repro[i]) + self.imsave('valid/%s_%03i_origin.png' % (args.model, i), orign[i]) + self.imsave('valid/%s_%03i_pixels.png' % (args.model, i), scald[i]) + self.imsave('valid/%s_%03i_reprod.png' % (args.model, i), repro[i]) def decay_learning_rate(self): l_r, t_cur = args.learning_rate, 0 @@ -510,7 +510,7 @@ class NeuralEnhancer(object): stats /= args.epoch_size totals, labels = [sum(total)] + list(total), ['total', 'prcpt', 'smthn', 'advrs'] gen_info = ['{}{}{}={:4.2e}'.format(ansi.WHITE_B, k, ansi.ENDC, v) for k, v in zip(labels, totals)] - print('\rEpoch #{} at {:4.1f}s, lr={:4.2e}{}'.format(epoch+1, time.time()-start, l_r, ' '*(args.epoch_size-60))) + print('\rEpoch #{} at {:4.1f}s, lr={:4.2e}{}'.format(epoch+1, time.time()-start, l_r, ' '*(args.epoch_size-35))) print(' - generator {}'.format(' '.join(gen_info))) real, fake = stats[:args.batch_size], stats[args.batch_size:]