readded deblur files

main
Fan-Wu Geoffrey Yang 3 years ago
parent 4a5406c7f4
commit 7857dc4d93

@ -0,0 +1,76 @@
# Dynamic Scene Deblurring with Parameter Selective Sharing and Nested Skip Connections
by Hongyun Gao, Xin Tao, Xiaoyong Shen, Jiaya Jia. Please refer to the [paper](http://jiaya.me/papers/deblur_cvpr19.pdf) for the details.
### Some results on the GoPro testing dataset by our model trained on default dataset
<img src="./imgs/comp_gopro.png" width="100%">
From the top to bottom, input images, results of [1], [2], [3] and ours are shown.
### Some results on more blurred images by our model trained on mixing datasets
<img src="./imgs/comp_real.png" width="100%">
The first column is the input images. The second column is generated by [2]. The third column is produced by [3]. The fourth column is our results.
## Prerequisites
- Python2.7 or Python3.6
- Opencv3.4
- Numpy
- Tensorflow 1.7 with NVIDIA GPU or CPU (cpu testing is very slow)
## Installation
Clone this repository to your PC.
```bash
git clone https://github.com/firenxygao/deblur.git
cd deblur
```
## Testing
If GPU is available, you can use `--gpu` argument and add the gpu id to enable GPU computation. Otherwise, the code will use CPU for computation.
```bash
python run_model.py --gpu=0
```
We provide 2 models for testing. The first model is trained on default data released by the paper ''Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring''. The second model is trained by mixing default data with our own generated data, which shows better performance than the first model. You can use `--model` argument to choose between `default` or `alldata`.
Our generated data can be downloaded by the links. [Dataset](https://drive.google.com/file/d/18__gfWalgOHA2vVUPGiCjLaR6UaRMSLv/view?usp=sharing).
```bash
python run_model.py --model=default
```
You can test one single image or a folder of images by using `--input_path` argument. If you test images in `testing_imgs`, the output images will be saved into `testing_imgs_res`. If you test one single image `testing_img.jpg`, the result will be named `testing_img_res.jpg`.
```bash
python run_model.py --input_path=testing_imgs
```
To test the model, the height and width of the input tensor should be pre-defined as `--max_height` and `--max_width`. Our network requires the height and width to be multiples of `16` and the dimension should be assigned to the maximum size to accommodate all the images.
In our implementation, we first check the image dimension. If the height is larger than the width, we transpose the image such that the width is larger than the height. Then we check whether image can be fit into the placeholder pre-defined by `max_height` and `max_width`. Otherwise, the images will be downsampled by the largest scale factor to
be fed into the placeholder. And results will be upsampled to the original size.
According to our experience, a 720\*1280 image will take 9GB memory. Users can adjust `max_height` and `max_width` to satisfy memory conditions.
```bash
python run_model.py --max_height=720 --max_width=1280
```
## Citation
If you find our released models or dataset useful, please consider citing:
```bibtex
@inproceedings{gao2019dynamic,
title={Dynamic scene deblurring with parameter selective sharing and nested skip connections},
author={Gao, Hongyun and Tao, Xin and Shen, Xiaoyong and Jia, Jiaya},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3848--3856},
year={2019}
}
```
## Reference
[1] `Gong et al.` D. Gong, J. Yang, L. Liu, Y. Zhang, I. D. Reid, C. Shen, A. Van Den Hengel, and Q. Shi. *From motion blur to motion flow: A deep learning solution for removing heterogeneous motion blur.* In CVPR, pages 23192328, 2017.
[2] `Nah et al.` S. Nah, T. H. Kim, and K. M. Lee. *Deep multi-scale convolutional neural network for dynamic scene deblurring.* In CVPR, pages 38833891, 2017.
[3] `Tao et al.` X. Tao, H. Gao, X. Shen, and J. Jia. *Scale-recurrent network for deep image deblurring.* In CVPR, pages 81748182, 2018.

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

@ -0,0 +1,173 @@
import os
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
import cv2
def im2uint8(x):
if x.__class__ == tf.Tensor:
return tf.cast(tf.clip_by_value(x, 0.0, 1.0) * 255.0, tf.uint8)
else:
t = np.clip(x, 0.0, 1.0) * 255.0
return t.astype(np.uint8)
class DEBLUR(object):
def __init__(self, args):
self.n_levels = 3
self.scale = 0.5
self.maxH = args.max_height
self.maxW = args.max_width
self.input_path = args.input_path
def generator(self, inputs, reuse=False, scope='g_net'):
def ResnetBlock(x, dim, ksize, scope='rb'):
with tf.variable_scope(scope):
net = slim.conv2d(x, dim, [ksize, ksize], scope='conv1')
net = slim.conv2d(net, dim, [ksize, ksize], activation_fn=None, scope='conv2')
return net
def DenseBlock(x, dim, ksize, scope='db'):
with tf.variable_scope(scope):
net1 = ResnetBlock(x, dim, ksize, scope='d1')
net2 = ResnetBlock(x+net1, dim, ksize, scope='d2')
net3 = ResnetBlock(x+net1+net2, dim, ksize, scope='d3')
net4 = ResnetBlock(x+net1+net2+net3, dim, ksize, scope='d4')
return x+net1+net2+net3+net4
n, h, w, c = inputs.get_shape().as_list()
x_unwrap = []
with tf.variable_scope(scope, reuse=reuse):
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
activation_fn=tf.nn.relu, padding='SAME', normalizer_fn=None,
weights_initializer=tf.contrib.layers.xavier_initializer(uniform=True),
biases_initializer=tf.constant_initializer(0.0)):
inp_blur = inputs
inp_pred = inputs
for i in range(self.n_levels):
scale = self.scale ** (self.n_levels - i - 1)
hi = int(round(h * scale))
wi = int(round(w * scale))
inp_blur = tf.image.resize_images(inputs, [hi, wi], method=0)
inp_pred = tf.stop_gradient(tf.image.resize_images(inp_pred, [hi, wi], method=0))
inp_all = tf.concat([inp_blur, inp_pred], axis=3, name='inp')
# encoder
conv1_1 = slim.conv2d(inp_all, 32, [3, 3], scope='enc1_1_%d' % i)
conv1_2 = DenseBlock(conv1_1, 32, 3, scope='enc1_2')
conv1_3 = DenseBlock(conv1_2, 32, 3, scope='enc1_2')
conv2_1 = slim.conv2d(conv1_3, 64, [3, 3], stride=2, scope='enc2_1_%d' % i)
conv2_2 = DenseBlock(conv2_1, 64, 3, scope='enc2_2')
conv2_3 = DenseBlock(conv2_2, 64, 3, scope='enc2_2')
conv3_1 = slim.conv2d(conv2_3, 128, [3, 3], stride=2, scope='enc3_1_%d' % i)
conv3_2 = DenseBlock(conv3_1, 128, 3, scope='enc3_2')
conv3_3 = DenseBlock(conv3_2, 128, 3, scope='enc3_2')
deconv3_3 = conv3_3
# decoder
deconv3_2 = DenseBlock(deconv3_3, 128, 3, scope='dec3_2')
deconv3_1 = DenseBlock(deconv3_2, 128, 3, scope='dec3_2')
deconv2_3 = slim.conv2d_transpose(deconv3_1, 64, [4, 4], stride=2, scope='dec2_3_%d' % i)
cat2 = deconv2_3 + conv2_3
deconv2_2 = DenseBlock(cat2, 64, 3, scope='dec2_2')
deconv2_1 = DenseBlock(deconv2_2, 64, 3, scope='dec2_2')
deconv1_3 = slim.conv2d_transpose(deconv2_1, 32, [4, 4], stride=2, scope='dec1_3_%d' % i)
cat1 = deconv1_3 + conv1_3
deconv1_2 = DenseBlock(cat1, 32, 3, scope='dec1_2')
deconv1_1 = DenseBlock(deconv1_2, 32, 3, scope='dec1_2')
inp_pred = slim.conv2d(deconv1_1, 1, [3, 3], activation_fn=None, scope='dec1_0_%d' % i)
inp_pred = inp_pred + inp_blur
if i >= 0:
x_unwrap.append(inp_pred)
return x_unwrap
def build(self, model_path):
self.inputs = tf.placeholder(shape=[3, self.maxH, self.maxW, 1], dtype=tf.float32)
self.outputs = self.generator(self.inputs, reuse=tf.AUTO_REUSE)
self.sess = tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)))
self.saver = tf.train.Saver()
current_dir = os.path.dirname(os.path.realpath(__file__))
checkpoint_dir = os.path.join(current_dir, model_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, 'deblur_model'))
def test(self):
input_path = self.input_path
if os.path.isfile(input_path):
mode = 'Image'
else:
mode = 'Folder'
if mode == 'Image':
print(input_path)
res = self.forward(input_path)
output_path = input_path[:-4] + '_res' + input_path[-4:]
cv2.imwrite(output_path, res)
else:
imgs = os.listdir(input_path)
print('Total %d images for deblurring' % len(imgs))
output_path = input_path + '_res'
if not os.path.exists(output_path):
os.makedirs(output_path)
for i in range(len(imgs)):
print(imgs[i])
img_path = os.path.join(input_path, imgs[i])
res = self.forward(img_path)
cv2.imwrite(os.path.join(output_path, imgs[i]), res)
def forward(self, imgpath):
blur = cv2.imread(imgpath, cv2.IMREAD_UNCHANGED).astype('float32')
h, w, c = blur.shape
blur = blur[:,:,::-1]
if (c == 3):
blur = blur[:,:,::-1]
else:
print('Image is not a color image, return the input image!')
return blur
# make sure the width is larger than the height
rot = False
if h > w:
blur = np.transpose(blur,[1,0,2])
rot = True
h = blur.shape[0]
w = blur.shape[1]
H = self.maxH
W = self.maxW
resize = False
if h > H or w > W:
scale = min(1.0 * H / h, 1.0 * W / w)
new_h = int(round(h * scale))
new_w = int(round(w * scale))
print('Original Size:', h, w, 'Resize by scale factor', scale, ' to:', new_h, new_w)
blur = cv2.resize(blur, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
resize = True
blur_pad = np.pad(blur, ((0, H - new_h), (0, W - new_w), (0, 0)), 'edge')
else:
blur_pad = np.pad(blur, ((0, H - h), (0, W - w), (0, 0)), 'edge')
blur_pad = np.expand_dims(blur_pad, 0)
blur_pad = np.transpose(blur_pad, (3,1,2,0))
deblur = self.sess.run(self.outputs, feed_dict={self.inputs: blur_pad/255.0})
res = deblur[-1]
res = np.transpose(res, (3,1,2,0))
res = im2uint8(res[0,:,:,:])
res = res[:,:,::-1]
# crop the image into original size
if resize:
res = res[:new_h,:new_w,:]
res = cv2.resize(res, (w, h), interpolation=cv2.INTER_CUBIC);
else:
res = res[:h,:w,:]
if rot:
res = np.transpose(res,[1,0,2])
res = res[:,:,::-1]
return res

@ -0,0 +1,43 @@
import os
import argparse
import tensorflow as tf
import model
def parse_args():
parser = argparse.ArgumentParser(description='deblur arguments')
parser.add_argument('--gpu', type=str, default='0',
help='set gpu id or leave it blank for cpu')
parser.add_argument('--model', type=str, default='default',
help='choose the model trained on default data or all data')
parser.add_argument('--input_path', type=str, default='./testing_imgs',
help='path of testing folder or path of one testing image')
parser.add_argument('--max_height', type=int, default=720,
help='max height for the input tensor, should be multiples of 16')
parser.add_argument('--max_width', type=int, default=1280,
help='max width for the input tensor, should be multiples of 16')
args = parser.parse_args()
return args
def main(_):
args = parse_args()
# set gpu id or leave it blank for cpu
if args.gpu == 'cpu':
os.environ['CUDA_VISIBLE_DEVICES'] = ''
else:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
# choose the model trained on default data or all data
if args.model == 'default':
model_path = os.path.join('checkpoints', 'default')
else:
model_path = os.path.join('checkpoints', 'alldata')
deblur = model.DEBLUR(args)
deblur.build(model_path)
deblur.test()
if __name__ == '__main__':
tf.app.run()

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 MiB

Loading…
Cancel
Save