commit
2e78d8f365
Binary file not shown.
Binary file not shown.
@ -0,0 +1,237 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
This module contains some common routines used by other samples.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
if PY3:
|
||||
from functools import reduce
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# built-in modules
|
||||
import os
|
||||
import itertools as it
|
||||
from contextlib import contextmanager
|
||||
|
||||
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
|
||||
|
||||
class Bunch(object):
|
||||
def __init__(self, **kw):
|
||||
self.__dict__.update(kw)
|
||||
def __str__(self):
|
||||
return str(self.__dict__)
|
||||
|
||||
def splitfn(fn):
|
||||
path, fn = os.path.split(fn)
|
||||
name, ext = os.path.splitext(fn)
|
||||
return path, name, ext
|
||||
|
||||
def anorm2(a):
|
||||
return (a*a).sum(-1)
|
||||
def anorm(a):
|
||||
return np.sqrt( anorm2(a) )
|
||||
|
||||
def homotrans(H, x, y):
|
||||
xs = H[0, 0]*x + H[0, 1]*y + H[0, 2]
|
||||
ys = H[1, 0]*x + H[1, 1]*y + H[1, 2]
|
||||
s = H[2, 0]*x + H[2, 1]*y + H[2, 2]
|
||||
return xs/s, ys/s
|
||||
|
||||
def to_rect(a):
|
||||
a = np.ravel(a)
|
||||
if len(a) == 2:
|
||||
a = (0, 0, a[0], a[1])
|
||||
return np.array(a, np.float64).reshape(2, 2)
|
||||
|
||||
def rect2rect_mtx(src, dst):
|
||||
src, dst = to_rect(src), to_rect(dst)
|
||||
cx, cy = (dst[1] - dst[0]) / (src[1] - src[0])
|
||||
tx, ty = dst[0] - src[0] * (cx, cy)
|
||||
M = np.float64([[ cx, 0, tx],
|
||||
[ 0, cy, ty],
|
||||
[ 0, 0, 1]])
|
||||
return M
|
||||
|
||||
|
||||
def lookat(eye, target, up = (0, 0, 1)):
|
||||
fwd = np.asarray(target, np.float64) - eye
|
||||
fwd /= anorm(fwd)
|
||||
right = np.cross(fwd, up)
|
||||
right /= anorm(right)
|
||||
down = np.cross(fwd, right)
|
||||
R = np.float64([right, down, fwd])
|
||||
tvec = -np.dot(R, eye)
|
||||
return R, tvec
|
||||
|
||||
def mtx2rvec(R):
|
||||
w, u, vt = cv2.SVDecomp(R - np.eye(3))
|
||||
p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0])
|
||||
c = np.dot(vt[0], p)
|
||||
s = np.dot(vt[1], p)
|
||||
axis = np.cross(vt[0], vt[1])
|
||||
return axis * np.arctan2(s, c)
|
||||
|
||||
def draw_str(dst, target, s):
|
||||
x, y = target
|
||||
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA)
|
||||
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)
|
||||
|
||||
class Sketcher:
|
||||
def __init__(self, windowname, dests, colors_func):
|
||||
self.prev_pt = None
|
||||
self.windowname = windowname
|
||||
self.dests = dests
|
||||
self.colors_func = colors_func
|
||||
self.dirty = False
|
||||
self.show()
|
||||
cv2.setMouseCallback(self.windowname, self.on_mouse)
|
||||
|
||||
def show(self):
|
||||
cv2.imshow(self.windowname, self.dests[0])
|
||||
|
||||
def on_mouse(self, event, x, y, flags, param):
|
||||
pt = (x, y)
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.prev_pt = pt
|
||||
elif event == cv2.EVENT_LBUTTONUP:
|
||||
self.prev_pt = None
|
||||
|
||||
if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
for dst, color in zip(self.dests, self.colors_func()):
|
||||
cv2.line(dst, self.prev_pt, pt, color, 5)
|
||||
self.dirty = True
|
||||
self.prev_pt = pt
|
||||
self.show()
|
||||
|
||||
|
||||
# palette data from matplotlib/_cm.py
|
||||
_jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1),
|
||||
(1, 0.5, 0.5)),
|
||||
'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1),
|
||||
(0.91,0,0), (1, 0, 0)),
|
||||
'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0),
|
||||
(1, 0, 0))}
|
||||
|
||||
cmap_data = { 'jet' : _jet_data }
|
||||
|
||||
def make_cmap(name, n=256):
|
||||
data = cmap_data[name]
|
||||
xs = np.linspace(0.0, 1.0, n)
|
||||
channels = []
|
||||
eps = 1e-6
|
||||
for ch_name in ['blue', 'green', 'red']:
|
||||
ch_data = data[ch_name]
|
||||
xp, yp = [], []
|
||||
for x, y1, y2 in ch_data:
|
||||
xp += [x, x+eps]
|
||||
yp += [y1, y2]
|
||||
ch = np.interp(xs, xp, yp)
|
||||
channels.append(ch)
|
||||
return np.uint8(np.array(channels).T*255)
|
||||
|
||||
def nothing(*arg, **kw):
|
||||
pass
|
||||
|
||||
def clock():
|
||||
return cv2.getTickCount() / cv2.getTickFrequency()
|
||||
|
||||
@contextmanager
|
||||
def Timer(msg):
|
||||
print(msg, '...',)
|
||||
start = clock()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
print("%.2f ms" % ((clock()-start)*1000))
|
||||
|
||||
class StatValue:
|
||||
def __init__(self, smooth_coef = 0.5):
|
||||
self.value = None
|
||||
self.smooth_coef = smooth_coef
|
||||
def update(self, v):
|
||||
if self.value is None:
|
||||
self.value = v
|
||||
else:
|
||||
c = self.smooth_coef
|
||||
self.value = c * self.value + (1.0-c) * v
|
||||
|
||||
class RectSelector:
|
||||
def __init__(self, win, callback):
|
||||
self.win = win
|
||||
self.callback = callback
|
||||
cv2.setMouseCallback(win, self.onmouse)
|
||||
self.drag_start = None
|
||||
self.drag_rect = None
|
||||
def onmouse(self, event, x, y, flags, param):
|
||||
x, y = np.int16([x, y]) # BUG
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.drag_start = (x, y)
|
||||
return
|
||||
if self.drag_start:
|
||||
if flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
xo, yo = self.drag_start
|
||||
x0, y0 = np.minimum([xo, yo], [x, y])
|
||||
x1, y1 = np.maximum([xo, yo], [x, y])
|
||||
self.drag_rect = None
|
||||
if x1-x0 > 0 and y1-y0 > 0:
|
||||
self.drag_rect = (x0, y0, x1, y1)
|
||||
else:
|
||||
rect = self.drag_rect
|
||||
self.drag_start = None
|
||||
self.drag_rect = None
|
||||
if rect:
|
||||
self.callback(rect)
|
||||
def draw(self, vis):
|
||||
if not self.drag_rect:
|
||||
return False
|
||||
x0, y0, x1, y1 = self.drag_rect
|
||||
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
||||
return True
|
||||
@property
|
||||
def dragging(self):
|
||||
return self.drag_rect is not None
|
||||
|
||||
|
||||
def grouper(n, iterable, fillvalue=None):
|
||||
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
|
||||
args = [iter(iterable)] * n
|
||||
if PY3:
|
||||
output = it.zip_longest(fillvalue=fillvalue, *args)
|
||||
else:
|
||||
output = it.izip_longest(fillvalue=fillvalue, *args)
|
||||
return output
|
||||
|
||||
def mosaic(w, imgs):
|
||||
'''Make a grid from images.
|
||||
|
||||
w -- number of grid columns
|
||||
imgs -- images (must have same size and format)
|
||||
'''
|
||||
imgs = iter(imgs)
|
||||
if PY3:
|
||||
img0 = next(imgs)
|
||||
else:
|
||||
img0 = imgs.next()
|
||||
pad = np.zeros_like(img0)
|
||||
imgs = it.chain([img0], imgs)
|
||||
rows = grouper(w, imgs, pad)
|
||||
return np.vstack(map(np.hstack, rows))
|
||||
|
||||
def getsize(img):
|
||||
h, w = img.shape[:2]
|
||||
return w, h
|
||||
|
||||
def mdot(*args):
|
||||
return reduce(np.dot, args)
|
||||
|
||||
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
|
||||
for kp in keypoints:
|
||||
x, y = kp.pt
|
||||
cv2.circle(vis, (int(x), int(y)), 2, color)
|
||||
@ -0,0 +1 @@
|
||||
Subproject commit 5791a82cc9b84e7401441e90cc9ceefeca24f742
|
||||
@ -0,0 +1,130 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Wiener deconvolution.
|
||||
|
||||
Sample shows how DFT can be used to perform Weiner deconvolution [1]
|
||||
of an image with user-defined point spread function (PSF)
|
||||
|
||||
Usage:
|
||||
deconvolution.py [--circle]
|
||||
[--angle <degrees>]
|
||||
[--d <diameter>]
|
||||
[--snr <signal/noise ratio in db>]
|
||||
[<input image>]
|
||||
|
||||
Use sliders to adjust PSF paramitiers.
|
||||
Keys:
|
||||
SPACE - switch btw linear/cirular PSF
|
||||
ESC - exit
|
||||
|
||||
Examples:
|
||||
deconvolution.py --angle 135 --d 22 ../data/licenseplate_motion.jpg
|
||||
(image source: http://www.topazlabs.com/infocus/_images/licenseplate_compare.jpg)
|
||||
|
||||
deconvolution.py --angle 86 --d 31 ../data/text_motion.jpg
|
||||
deconvolution.py --circle --d 19 ../data/text_defocus.jpg
|
||||
(image source: compact digital photo camera, no artificial distortion)
|
||||
|
||||
|
||||
[1] http://en.wikipedia.org/wiki/Wiener_deconvolution
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# local module
|
||||
# from common import nothing
|
||||
|
||||
|
||||
def blur_edge(img, d=31):
|
||||
h, w = img.shape[:2]
|
||||
img_pad = cv2.copyMakeBorder(img, d, d, d, d, cv2.BORDER_WRAP)
|
||||
img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d]
|
||||
y, x = np.indices((h, w))
|
||||
dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1)
|
||||
w = np.minimum(np.float32(dist)/d, 1.0)
|
||||
return img*w + img_blur*(1-w)
|
||||
|
||||
def motion_kernel(angle, d, sz=65):
|
||||
kern = np.ones((1, d), np.float32)
|
||||
c, s = np.cos(angle), np.sin(angle)
|
||||
A = np.float32([[c, -s, 0], [s, c, 0]])
|
||||
sz2 = sz // 2
|
||||
A[:,2] = (sz2, sz2) - np.dot(A[:,:2], ((d-1)*0.5, 0))
|
||||
kern = cv2.warpAffine(kern, A, (sz, sz), flags=cv2.INTER_CUBIC)
|
||||
return kern
|
||||
|
||||
def defocus_kernel(d, sz=65):
|
||||
kern = np.zeros((sz, sz), np.uint8)
|
||||
cv2.circle(kern, (sz, sz), d, 255, -1, cv2.LINE_AA, shift=1)
|
||||
kern = np.float32(kern) / 255.0
|
||||
return kern
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(__doc__)
|
||||
import sys, getopt
|
||||
opts, args = getopt.getopt(sys.argv[1:], '', ['circle', 'angle=', 'd=', 'snr='])
|
||||
opts = dict(opts)
|
||||
try:
|
||||
fn = args[0]
|
||||
except:
|
||||
fn = '../data/licenseplate_motion.jpg'
|
||||
|
||||
win = 'deconvolution'
|
||||
|
||||
img = cv2.imread(fn, 0)
|
||||
if img is None:
|
||||
print('Failed to load fn1:', fn1)
|
||||
sys.exit(1)
|
||||
|
||||
img = np.float32(img)/255.0
|
||||
cv2.imshow('input', img)
|
||||
|
||||
img = blur_edge(img)
|
||||
IMG = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT)
|
||||
|
||||
defocus = '--circle' in opts
|
||||
|
||||
def update(_):
|
||||
ang = np.deg2rad( cv2.getTrackbarPos('angle', win) )
|
||||
d = cv2.getTrackbarPos('d', win)
|
||||
noise = 10**(-0.1*cv2.getTrackbarPos('SNR (db)', win))
|
||||
|
||||
if defocus:
|
||||
psf = defocus_kernel(d)
|
||||
else:
|
||||
psf = motion_kernel(ang, d)
|
||||
cv2.imshow('psf', psf)
|
||||
|
||||
psf /= psf.sum()
|
||||
psf_pad = np.zeros_like(img)
|
||||
kh, kw = psf.shape
|
||||
psf_pad[:kh, :kw] = psf
|
||||
PSF = cv2.dft(psf_pad, flags=cv2.DFT_COMPLEX_OUTPUT, nonzeroRows = kh)
|
||||
PSF2 = (PSF**2).sum(-1)
|
||||
iPSF = PSF / (PSF2 + noise)[...,np.newaxis]
|
||||
RES = cv2.mulSpectrums(IMG, iPSF, 0)
|
||||
res = cv2.idft(RES, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
|
||||
res = np.roll(res, -kh//2, 0)
|
||||
res = np.roll(res, -kw//2, 1)
|
||||
cv2.imshow(win, res)
|
||||
|
||||
cv2.namedWindow(win)
|
||||
cv2.namedWindow('psf', 0)
|
||||
cv2.createTrackbar('angle', win, int(opts.get('--angle', 135)), 180, update)
|
||||
cv2.createTrackbar('d', win, int(opts.get('--d', 22)), 50, update)
|
||||
cv2.createTrackbar('SNR (db)', win, int(opts.get('--snr', 25)), 50, update)
|
||||
update(None)
|
||||
|
||||
while True:
|
||||
ch = cv2.waitKey()
|
||||
if ch == 27:
|
||||
break
|
||||
if ch == ord(' '):
|
||||
defocus = not defocus
|
||||
update(None)
|
||||
|
After Width: | Height: | Size: 38 KiB |
|
After Width: | Height: | Size: 29 KiB |
@ -0,0 +1,15 @@
|
||||
import cv2
|
||||
from cv2 import dnn_superres
|
||||
# Create an SR object - only function that differs from c++ code
|
||||
sr = dnn_superres.DnnSuperResImpl_create()
|
||||
# Read image
|
||||
image = cv2.imread('./images/person.jpg')
|
||||
# Read the desired model
|
||||
path = "EDSR_x4.pb"
|
||||
sr.readModel(path)
|
||||
# Set the desired model and scale to get correct pre- and post-processing
|
||||
sr.setModel("edsr", 4)
|
||||
# Upscale the image
|
||||
result = sr.upsample(image)
|
||||
# Save the image
|
||||
cv2.imwrite("./upscaled.png", result)
|
||||
@ -0,0 +1,81 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Watershed segmentation
|
||||
=========
|
||||
This program demonstrates the watershed segmentation algorithm
|
||||
in OpenCV: watershed().
|
||||
Usage
|
||||
-----
|
||||
watershed.py [image filename]
|
||||
Keys
|
||||
----
|
||||
1-7 - switch marker color
|
||||
SPACE - update segmentation
|
||||
r - reset
|
||||
a - toggle autoupdate
|
||||
ESC - exit
|
||||
'''
|
||||
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
from common import Sketcher
|
||||
|
||||
class App:
|
||||
def __init__(self, fn):
|
||||
self.img = cv2.imread(fn)
|
||||
if self.img is None:
|
||||
raise Exception('Failed to load image file: %s' % fn)
|
||||
|
||||
h, w = self.img.shape[:2]
|
||||
self.markers = np.zeros((h, w), np.int32)
|
||||
self.markers_vis = self.img.copy()
|
||||
self.cur_marker = 1
|
||||
self.colors = np.int32( list(np.ndindex(2, 2, 2)) ) * 255
|
||||
|
||||
self.auto_update = True
|
||||
self.sketch = Sketcher('img', [self.markers_vis, self.markers], self.get_colors)
|
||||
|
||||
def get_colors(self):
|
||||
return list(map(int, self.colors[self.cur_marker])), self.cur_marker
|
||||
|
||||
def watershed(self):
|
||||
m = self.markers.copy()
|
||||
cv2.watershed(self.img, m)
|
||||
overlay = self.colors[np.maximum(m, 0)]
|
||||
vis = cv2.addWeighted(self.img, 0.5, overlay, 0.5, 0.0, dtype=cv2.CV_8UC3)
|
||||
cv2.imshow('watershed', vis)
|
||||
|
||||
def run(self):
|
||||
while cv2.getWindowProperty('img', 0) != -1 or cv2.getWindowProperty('watershed', 0) != -1:
|
||||
ch = cv2.waitKey(50)
|
||||
if ch == 27:
|
||||
break
|
||||
if ch >= ord('1') and ch <= ord('7'):
|
||||
self.cur_marker = ch - ord('0')
|
||||
print('marker: ', self.cur_marker)
|
||||
if ch == ord(' ') or (self.sketch.dirty and self.auto_update):
|
||||
self.watershed()
|
||||
self.sketch.dirty = False
|
||||
if ch in [ord('a'), ord('A')]:
|
||||
self.auto_update = not self.auto_update
|
||||
print('auto_update if', ['off', 'on'][self.auto_update])
|
||||
if ch in [ord('r'), ord('R')]:
|
||||
self.markers[:] = 0
|
||||
self.markers_vis[:] = self.img
|
||||
self.sketch.show()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../data/fruits.jpg'
|
||||
print(__doc__)
|
||||
App(fn).run()
|
||||
Loading…
Reference in new issue