You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
310 lines
13 KiB
310 lines
13 KiB
from __future__ import print_function
|
|
|
|
import os
|
|
import math
|
|
import torch
|
|
import argparse
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import torch.legacy.nn as lnn
|
|
import torch.nn.functional as F
|
|
|
|
from functools import reduce
|
|
from torch.autograd import Variable
|
|
from torch.utils.serialization import load_lua
|
|
|
|
class LambdaBase(nn.Sequential):
|
|
def __init__(self, fn, *args):
|
|
super(LambdaBase, self).__init__(*args)
|
|
self.lambda_func = fn
|
|
|
|
def forward_prepare(self, input):
|
|
output = []
|
|
for module in self._modules.values():
|
|
output.append(module(input))
|
|
return output if output else input
|
|
|
|
class Lambda(LambdaBase):
|
|
def forward(self, input):
|
|
return self.lambda_func(self.forward_prepare(input))
|
|
|
|
class LambdaMap(LambdaBase):
|
|
def forward(self, input):
|
|
# result is Variables list [Variable1, Variable2, ...]
|
|
return list(map(self.lambda_func,self.forward_prepare(input)))
|
|
|
|
class LambdaReduce(LambdaBase):
|
|
def forward(self, input):
|
|
# result is a Variable
|
|
return reduce(self.lambda_func,self.forward_prepare(input))
|
|
|
|
|
|
def copy_param(m,n):
|
|
if m.weight is not None: n.weight.data.copy_(m.weight)
|
|
if m.bias is not None: n.bias.data.copy_(m.bias)
|
|
if hasattr(n,'running_mean'): n.running_mean.copy_(m.running_mean)
|
|
if hasattr(n,'running_var'): n.running_var.copy_(m.running_var)
|
|
|
|
def add_submodule(seq, *args):
|
|
for n in args:
|
|
seq.add_module(str(len(seq._modules)),n)
|
|
|
|
def lua_recursive_model(module,seq):
|
|
for m in module.modules:
|
|
name = type(m).__name__
|
|
real = m
|
|
if name == 'TorchObject':
|
|
name = m._typename.replace('cudnn.','')
|
|
m = m._obj
|
|
|
|
if name == 'SpatialConvolution' or name == 'nn.SpatialConvolutionMM':
|
|
if not hasattr(m,'groups') or m.groups is None: m.groups=1
|
|
n = nn.Conv2d(m.nInputPlane,m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),1,m.groups,bias=(m.bias is not None))
|
|
print(size(m.weight))
|
|
print(n)
|
|
copy_param(m,n)
|
|
add_submodule(seq,n)
|
|
elif name == 'SpatialBatchNormalization':
|
|
n = nn.BatchNorm2d(m.running_mean.size(0), m.eps, m.momentum, m.affine)
|
|
copy_param(m,n)
|
|
add_submodule(seq,n)
|
|
elif name == 'VolumetricBatchNormalization':
|
|
n = nn.BatchNorm3d(m.running_mean.size(0), m.eps, m.momentum, m.affine)
|
|
copy_param(m, n)
|
|
add_submodule(seq, n)
|
|
elif name == 'ReLU':
|
|
n = nn.ReLU()
|
|
add_submodule(seq,n)
|
|
elif name == 'Sigmoid':
|
|
n = nn.Sigmoid()
|
|
add_submodule(seq,n)
|
|
elif name == 'SpatialMaxPooling':
|
|
n = nn.MaxPool2d((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),ceil_mode=m.ceil_mode)
|
|
add_submodule(seq,n)
|
|
elif name == 'SpatialAveragePooling':
|
|
n = nn.AvgPool2d((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),ceil_mode=m.ceil_mode)
|
|
add_submodule(seq,n)
|
|
elif name == 'SpatialUpSamplingNearest':
|
|
n = nn.UpsamplingNearest2d(scale_factor=m.scale_factor)
|
|
add_submodule(seq,n)
|
|
elif name == 'View':
|
|
n = Lambda(lambda x: x.view(x.size(0),-1))
|
|
add_submodule(seq,n)
|
|
elif name == 'Reshape':
|
|
n = Lambda(lambda x: x.view(x.size(0),-1))
|
|
add_submodule(seq,n)
|
|
elif name == 'Linear':
|
|
# Linear in pytorch only accept 2D input
|
|
n1 = Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x )
|
|
n2 = nn.Linear(m.weight.size(1),m.weight.size(0),bias=(m.bias is not None))
|
|
copy_param(m,n2)
|
|
n = nn.Sequential(n1,n2)
|
|
add_submodule(seq,n)
|
|
elif name == 'Dropout':
|
|
m.inplace = False
|
|
n = nn.Dropout(m.p)
|
|
add_submodule(seq,n)
|
|
elif name == 'SoftMax':
|
|
n = nn.Softmax()
|
|
add_submodule(seq,n)
|
|
elif name == 'Identity':
|
|
n = Lambda(lambda x: x) # do nothing
|
|
add_submodule(seq,n)
|
|
elif name == 'SpatialFullConvolution':
|
|
n = nn.ConvTranspose2d(m.nInputPlane,m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),(m.adjW,m.adjH))
|
|
copy_param(m,n)
|
|
add_submodule(seq,n)
|
|
elif name == 'VolumetricFullConvolution':
|
|
n = nn.ConvTranspose3d(m.nInputPlane,m.nOutputPlane,(m.kT,m.kW,m.kH),(m.dT,m.dW,m.dH),(m.padT,m.padW,m.padH),(m.adjT,m.adjW,m.adjH),m.groups)
|
|
copy_param(m,n)
|
|
add_submodule(seq, n)
|
|
elif name == 'SpatialReplicationPadding':
|
|
n = nn.ReplicationPad2d((m.pad_l,m.pad_r,m.pad_t,m.pad_b))
|
|
add_submodule(seq,n)
|
|
elif name == 'SpatialReflectionPadding':
|
|
n = nn.ReflectionPad2d((m.pad_l,m.pad_r,m.pad_t,m.pad_b))
|
|
add_submodule(seq,n)
|
|
elif name == 'Copy':
|
|
n = Lambda(lambda x: x) # do nothing
|
|
add_submodule(seq,n)
|
|
elif name == 'Narrow':
|
|
n = Lambda(lambda x,a=(m.dimension,m.index,m.length): x.narrow(*a))
|
|
add_submodule(seq,n)
|
|
elif name == 'SpatialCrossMapLRN':
|
|
lrn = lnn.SpatialCrossMapLRN(m.size,m.alpha,m.beta,m.k)
|
|
n = Lambda(lambda x,lrn=lrn: Variable(lrn.forward(x.data)))
|
|
add_submodule(seq,n)
|
|
elif name == 'Sequential':
|
|
n = nn.Sequential()
|
|
lua_recursive_model(m,n)
|
|
add_submodule(seq,n)
|
|
elif name == 'ConcatTable': # output is list
|
|
n = LambdaMap(lambda x: x)
|
|
lua_recursive_model(m,n)
|
|
add_submodule(seq,n)
|
|
elif name == 'CAddTable': # input is list
|
|
n = LambdaReduce(lambda x,y: x+y)
|
|
add_submodule(seq,n)
|
|
elif name == 'Concat':
|
|
dim = m.dimension
|
|
n = LambdaReduce(lambda x,y,dim=dim: torch.cat((x,y),dim))
|
|
lua_recursive_model(m,n)
|
|
add_submodule(seq,n)
|
|
elif name == 'TorchObject':
|
|
print('Not Implement',name,real._typename)
|
|
else:
|
|
print('Not Implement',name)
|
|
|
|
|
|
def lua_recursive_source(module):
|
|
s = []
|
|
for m in module.modules:
|
|
name = type(m).__name__
|
|
real = m
|
|
if name == 'TorchObject':
|
|
name = m._typename.replace('cudnn.','')
|
|
m = m._obj
|
|
|
|
if name == 'SpatialConvolution' or name == 'nn.SpatialConvolutionMM':
|
|
if not hasattr(m,'groups') or m.groups is None: m.groups=1
|
|
s += ['nn.Conv2d({},{},{},{},{},{},{},bias={}),#Conv2d'.format(m.nInputPlane,
|
|
m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),1,m.groups,m.bias is not None)]
|
|
elif name == 'SpatialBatchNormalization':
|
|
s += ['nn.BatchNorm2d({},{},{},{}),#BatchNorm2d'.format(m.running_mean.size(0), m.eps, m.momentum, m.affine)]
|
|
elif name == 'VolumetricBatchNormalization':
|
|
s += ['nn.BatchNorm3d({},{},{},{}),#BatchNorm3d'.format(m.running_mean.size(0), m.eps, m.momentum, m.affine)]
|
|
elif name == 'ReLU':
|
|
s += ['nn.ReLU()']
|
|
elif name == 'Sigmoid':
|
|
s += ['nn.Sigmoid()']
|
|
elif name == 'SpatialMaxPooling':
|
|
s += ['nn.MaxPool2d({},{},{},ceil_mode={}),#MaxPool2d'.format((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),m.ceil_mode)]
|
|
elif name == 'SpatialAveragePooling':
|
|
s += ['nn.AvgPool2d({},{},{},ceil_mode={}),#AvgPool2d'.format((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),m.ceil_mode)]
|
|
elif name == 'SpatialUpSamplingNearest':
|
|
s += ['nn.UpsamplingNearest2d(scale_factor={})'.format(m.scale_factor)]
|
|
elif name == 'View':
|
|
s += ['Lambda(lambda x: x.view(x.size(0),-1)), # View']
|
|
elif name == 'Reshape':
|
|
s += ['Lambda(lambda x: x.view(x.size(0),-1)), # Reshape']
|
|
elif name == 'Linear':
|
|
s1 = 'Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x )'
|
|
s2 = 'nn.Linear({},{},bias={})'.format(m.weight.size(1),m.weight.size(0),(m.bias is not None))
|
|
s += ['nn.Sequential({},{}),#Linear'.format(s1,s2)]
|
|
elif name == 'Dropout':
|
|
s += ['nn.Dropout({})'.format(m.p)]
|
|
elif name == 'SoftMax':
|
|
s += ['nn.Softmax()']
|
|
elif name == 'Identity':
|
|
s += ['Lambda(lambda x: x), # Identity']
|
|
elif name == 'SpatialFullConvolution':
|
|
s += ['nn.ConvTranspose2d({},{},{},{},{},{})'.format(m.nInputPlane,
|
|
m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),(m.adjW,m.adjH))]
|
|
elif name == 'VolumetricFullConvolution':
|
|
s += ['nn.ConvTranspose3d({},{},{},{},{},{},{})'.format(m.nInputPlane,
|
|
m.nOutputPlane,(m.kT,m.kW,m.kH),(m.dT,m.dW,m.dH),(m.padT,m.padW,m.padH),(m.adjT,m.adjW,m.adjH),m.groups)]
|
|
elif name == 'SpatialReplicationPadding':
|
|
s += ['nn.ReplicationPad2d({})'.format((m.pad_l,m.pad_r,m.pad_t,m.pad_b))]
|
|
elif name == 'SpatialReflectionPadding':
|
|
s += ['nn.ReflectionPad2d({})'.format((m.pad_l,m.pad_r,m.pad_t,m.pad_b))]
|
|
elif name == 'Copy':
|
|
s += ['Lambda(lambda x: x), # Copy']
|
|
elif name == 'Narrow':
|
|
s += ['Lambda(lambda x,a={}: x.narrow(*a))'.format((m.dimension,m.index,m.length))]
|
|
elif name == 'SpatialCrossMapLRN':
|
|
lrn = 'lnn.SpatialCrossMapLRN(*{})'.format((m.size,m.alpha,m.beta,m.k))
|
|
s += ['Lambda(lambda x,lrn={}: Variable(lrn.forward(x.data)))'.format(lrn)]
|
|
|
|
elif name == 'Sequential':
|
|
s += ['nn.Sequential( # Sequential']
|
|
s += lua_recursive_source(m)
|
|
s += [')']
|
|
elif name == 'ConcatTable':
|
|
s += ['LambdaMap(lambda x: x, # ConcatTable']
|
|
s += lua_recursive_source(m)
|
|
s += [')']
|
|
elif name == 'CAddTable':
|
|
s += ['LambdaReduce(lambda x,y: x+y), # CAddTable']
|
|
elif name == 'Concat':
|
|
dim = m.dimension
|
|
s += ['LambdaReduce(lambda x,y,dim={}: torch.cat((x,y),dim), # Concat'.format(m.dimension)]
|
|
s += lua_recursive_source(m)
|
|
s += [')']
|
|
else:
|
|
s += '# ' + name + ' Not Implement,\n'
|
|
s = map(lambda x: '\t{}'.format(x),s)
|
|
return s
|
|
|
|
def simplify_source(s):
|
|
s = map(lambda x: x.replace(',(1, 1),(0, 0),1,1,bias=True),#Conv2d',')'),s)
|
|
s = map(lambda x: x.replace(',(0, 0),1,1,bias=True),#Conv2d',')'),s)
|
|
s = map(lambda x: x.replace(',1,1,bias=True),#Conv2d',')'),s)
|
|
s = map(lambda x: x.replace(',bias=True),#Conv2d',')'),s)
|
|
s = map(lambda x: x.replace('),#Conv2d',')'),s)
|
|
s = map(lambda x: x.replace(',1e-05,0.1,True),#BatchNorm2d',')'),s)
|
|
s = map(lambda x: x.replace('),#BatchNorm2d',')'),s)
|
|
s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#MaxPool2d',')'),s)
|
|
s = map(lambda x: x.replace(',ceil_mode=False),#MaxPool2d',')'),s)
|
|
s = map(lambda x: x.replace('),#MaxPool2d',')'),s)
|
|
s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#AvgPool2d',')'),s)
|
|
s = map(lambda x: x.replace(',ceil_mode=False),#AvgPool2d',')'),s)
|
|
s = map(lambda x: x.replace(',bias=True)),#Linear',')), # Linear'),s)
|
|
s = map(lambda x: x.replace(')),#Linear',')), # Linear'),s)
|
|
|
|
s = map(lambda x: '{},\n'.format(x),s)
|
|
s = map(lambda x: x[1:],s)
|
|
s = reduce(lambda x,y: x+y, s)
|
|
return s
|
|
|
|
def torch_to_pytorch(t7_filename,outputname=None):
|
|
model = load_lua(t7_filename,unknown_classes=True)
|
|
if type(model).__name__=='hashable_uniq_dict': model=model.model
|
|
model.gradInput = None
|
|
slist = lua_recursive_source(lnn.Sequential().add(model))
|
|
s = simplify_source(slist)
|
|
header = '''
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.legacy.nn as lnn
|
|
from functools import reduce
|
|
from torch.autograd import Variable
|
|
class LambdaBase(nn.Sequential):
|
|
def __init__(self, fn, *args):
|
|
super(LambdaBase, self).__init__(*args)
|
|
self.lambda_func = fn
|
|
def forward_prepare(self, input):
|
|
output = []
|
|
for module in self._modules.values():
|
|
output.append(module(input))
|
|
return output if output else input
|
|
class Lambda(LambdaBase):
|
|
def forward(self, input):
|
|
return self.lambda_func(self.forward_prepare(input))
|
|
class LambdaMap(LambdaBase):
|
|
def forward(self, input):
|
|
return list(map(self.lambda_func,self.forward_prepare(input)))
|
|
class LambdaReduce(LambdaBase):
|
|
def forward(self, input):
|
|
return reduce(self.lambda_func,self.forward_prepare(input))
|
|
'''
|
|
varname = t7_filename.replace('.t7','').replace('.','_').replace('-','_')
|
|
s = '{}\n\n{} = {}'.format(header,varname,s[:-2])
|
|
|
|
if outputname is None: outputname=varname
|
|
with open(outputname+'.py', "w") as pyfile:
|
|
pyfile.write(s)
|
|
|
|
n = nn.Sequential()
|
|
lua_recursive_model(model,n)
|
|
torch.save(n.state_dict(),outputname+'.pth')
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Convert torch t7 model to pytorch')
|
|
parser.add_argument('--model','-m', type=str, required=True,
|
|
help='torch model file in t7 format')
|
|
parser.add_argument('--output', '-o', type=str, default=None,
|
|
help='output file name prefix, xxx.py xxx.pth')
|
|
args = parser.parse_args()
|
|
|
|
torch_to_pytorch(args.model,args.output) |