main
rajeevyasarla 6 years ago
parent 7704449715
commit ddc8f7dd8a

@ -21,7 +21,11 @@ We propose a novel multi-stream architecture and training methodology that explo
3. python test_face_deblur.py --dataroot ./facades/github/ --valDataroot <path_to_test_data> --netG ./pretrained_models/Deblur_epoch_Best.pth
## To train UMRL:
python train_face_deblur.py --dataroot <path_to_train_data> --valDataroot ./facades/github/ --exp ./face_deblur --batchSize 10
1. Kernels are generated using,
- [Boracchi and Foi, 2012] Modeling the Performance of Image Restoration from Motion Blur Giacomo Boracchi and Alessandro Foi, Image Processing, IEEE Transactions on. vol.21, no.8, pp. 3502 - 3517, Aug. 2012,
- 25000 kernels with size ranging from 13 to 29 are generated and saved as ".mat" file
2. Clean face images from Helen and CelebA are aligned and used as input to train UMSN
3. python train_face_deblur.py --dataroot <path_to_train_data> --valDataroot ./facades/github/ --exp ./face_deblur --batchSize 10
- input should be clean image. blurry images for training are generated by the code it self.

@ -356,7 +356,7 @@ for epoch in range(opt.niter):
#x1 = xmask1*class_msk1*x_hat+(1-xmask1)*class_msk1*target
#smaps_hat,smaps64_hat = netS(x_hat1,x_hat64)
if epoch>4 or (epoch<4 and ganIterations%10 ~= 9):
if epoch>0:
with torch.no_grad():
smaps,smaps64 = netS(target,target_256)
L_img_ = 0.33*criterionCAE(x_hat64, target_256) #+ 0.5*criterionCAE(smaps_hat, smaps)

Loading…
Cancel
Save