diff --git a/README.md b/README.md index 9b7bdaf..fbb97d2 100644 --- a/README.md +++ b/README.md @@ -14,14 +14,14 @@ We propose a novel multi-stream architecture and training methodology that explo 4. CPU or NVIDIA GPU + CUDA CuDNN (CUDA 8.0) -## To test UMRL: +## To test UMSN: 1. Download test datasets provided the authors of Ziyi et al. - https://sites.google.com/site/ziyishenmi/cvpr18_face_deblur 2. run test_data_generation.m - It renames the files counting from 1, for example 000001.png 3. python test_face_deblur.py --dataroot ./facades/github/ --valDataroot --netG ./pretrained_models/Deblur_epoch_Best.pth -## To train UMRL: +## To train UMSN: 1. Kernels are generated using, - [Boracchi and Foi, 2012] Modeling the Performance of Image Restoration from Motion Blur Giacomo Boracchi and Alessandro Foi, Image Processing, IEEE Transactions on. vol.21, no.8, pp. 3502 - 3517, Aug. 2012, - 25000 kernels with size ranging from 13 to 29 are generated and saved as ".mat" file