diff --git a/seg_train.py b/seg_train.py index 4faeda0..da2e98e 100644 --- a/seg_train.py +++ b/seg_train.py @@ -63,6 +63,7 @@ parser.add_argument('--netG', default='', help="path to netG (to continue traini parser.add_argument('--netD', default='', help="path to netD (to continue training)") parser.add_argument('--workers', type=int, help='number of data loading workers', default=1) parser.add_argument('--exp', default='sample', help='folder to output images and model checkpoints') +parser.add_argument('--modeclean', type=int,default= 1, help='segmentation network training mode, by it is default trained using clean images') parser.add_argument('--display', type=int, default=5, help='interval for displaying train-logs') parser.add_argument('--evalIter', type=int, default=500, help='interval for evauating(generating) images from valDataroot') opt = parser.parse_args() @@ -245,6 +246,10 @@ ganIterations = 0 count = 1 Best_Fs = 0 Best_epoch = 0 +if opt.modeclean == 1: + Num_rn = 0 +else: + Num_rn = 34 for epoch in range(1000): if epoch%60 == 0 and epoch>0: opt.lrG = opt.lrG/1.25 @@ -288,7 +293,7 @@ for epoch in range(1000): y1 = int((160-opt.imageSize)/2) input_cpu = input_cpu.numpy() target_cpu = target_cpu.numpy() - if (random.randint(0,100)<0) : + if (random.randint(0,100)0.49]=1 + target_cpu[target_cpu<=0.49]=0 input_cpu = torch.from_numpy(input_cpu) target_cpu = torch.from_numpy(target_cpu) target_cpu, input_cpu = target_cpu.float().cuda(), input_cpu.float().cuda()