You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

49 lines
1.4 KiB

from __future__ import print_function
import numpy as np
from PIL import Image
import numpy as np
import os
import matplotlib.pyplot as plt
import torch
def load_image(path):
if(path[-3:] == 'dng'):
import rawpy
with rawpy.imread(path) as raw:
img = raw.postprocess()
elif(path[-3:]=='bmp' or path[-3:]=='jpg' or path[-3:]=='png'):
import cv2
return cv2.imread(path)[:,:,::-1]
else:
img = (255*plt.imread(path)[:,:,:3]).astype('uint8')
return img
def save_image(image_numpy, image_path, ):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def mkdirs(paths):
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.):
# def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.):
image_numpy = image_tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
return image_numpy.astype(imtype)
def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.):
# def im2tensor(image, imtype=np.uint8, cent=1., factor=1.):
return torch.Tensor((image / factor - cent)
[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))