# Conflicts: # visualiser/src/main/java/seng302/VisualiserInput.javamain
commit
22e5996e64
@ -0,0 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="KotlinCommonCompilerArguments">
|
||||
<option name="languageVersion" value="1.1" />
|
||||
<option name="apiVersion" value="1.1" />
|
||||
</component>
|
||||
</project>
|
||||
@ -0,0 +1,109 @@
|
||||
package seng302.DataInput;
|
||||
|
||||
/**
|
||||
* Created by hba56 on 10/05/17.
|
||||
*/
|
||||
|
||||
import seng302.Exceptions.InvalidPolarFileException;
|
||||
import seng302.Model.Bearing;
|
||||
import seng302.Model.Polars;
|
||||
|
||||
import java.io.*;
|
||||
import java.util.ArrayList;
|
||||
|
||||
|
||||
/**
|
||||
* Responsible for parsing a polar data file, and creating a Polar data object.
|
||||
*/
|
||||
public class PolarParser {
|
||||
|
||||
|
||||
/**
|
||||
* Given a filename, this function parses it and generates a Polar object, which can be queried for polar information.
|
||||
* @param filename The filename to load and read data from (loaded as a resource).
|
||||
* @return A Polar table containing data from the given file.
|
||||
*/
|
||||
public static Polars parse(String filename) throws InvalidPolarFileException {
|
||||
//Temporary table to return later.
|
||||
Polars polarTable = new Polars();
|
||||
|
||||
|
||||
//Open the file for reading.
|
||||
InputStream fileStream = PolarParser.class.getClassLoader().getResourceAsStream(filename);
|
||||
if (fileStream == null) {
|
||||
throw new InvalidPolarFileException("Could not open polar data file: " + filename);
|
||||
}
|
||||
//Wrap it with buffered input stream to set encoding and buffer.
|
||||
InputStreamReader in = null;
|
||||
try {
|
||||
in = new InputStreamReader(fileStream, "UTF-8");
|
||||
} catch (UnsupportedEncodingException e) {
|
||||
throw new InvalidPolarFileException("Unsupported encoding: UTF-8", e);
|
||||
}
|
||||
BufferedReader inputStream = new BufferedReader(in);
|
||||
|
||||
|
||||
//We expect the polar data file to have the column headings:
|
||||
// Tws, Twa0, Bsp0, Twa1, Bsp1, UpTwa, UpBsp, Twa2, Bsp2, Twa3, Bsp3, Twa4, Bsp4, Twa5, Bsp5, Twa6, Bsp6, DnTwa, DnBsp, Twa7, Bsp7
|
||||
//and to have 7 rows of data.
|
||||
//Angles are expected to be in degrees, and velocities in knots.
|
||||
|
||||
|
||||
//We read data rows, and split them into arrays of elements.
|
||||
ArrayList<String[]> dataRows = new ArrayList<>(7);
|
||||
try {
|
||||
//Heading row.
|
||||
//We skip the heading row by reading it.
|
||||
String headingRow = inputStream.readLine();
|
||||
|
||||
//Data rows.
|
||||
while (inputStream.ready()) {
|
||||
//Read line.
|
||||
String dataRow = inputStream.readLine();
|
||||
|
||||
//Split line.
|
||||
String[] dataElements = dataRow.split(",");
|
||||
|
||||
//Add to collection.
|
||||
dataRows.add(dataElements);
|
||||
|
||||
}
|
||||
|
||||
} catch (IOException e) {
|
||||
throw new InvalidPolarFileException("Could not read from polar data file: " + filename, e);
|
||||
}
|
||||
|
||||
//Finished reading in data, now we need to construct polar rows and table from it.
|
||||
//For each row...
|
||||
int rowNumber = 0;
|
||||
for (String[] row : dataRows) {
|
||||
|
||||
//For each pair of columns (the pair is angle, speed).
|
||||
//We start at column 1 since column 0 is the wind speed column.
|
||||
for (int i = 1; i < row.length; i += 2) {
|
||||
|
||||
//Add angle+speed=velocity estimate to polar table.
|
||||
try {
|
||||
|
||||
//Add the polar value to the polar table
|
||||
double windSpeedKnots = Double.parseDouble(row[0]);
|
||||
double angleDegrees = Double.parseDouble(row[i]);
|
||||
Bearing angle = Bearing.fromDegrees(angleDegrees);
|
||||
double boatSpeedKnots = Double.parseDouble(row[i + 1]);
|
||||
polarTable.addEstimate(windSpeedKnots, angle, boatSpeedKnots);
|
||||
|
||||
} catch (NumberFormatException e) {
|
||||
throw new InvalidPolarFileException("Could not convert (Row,Col): (" + rowNumber + "," + i +") = " + row[i] + " to a double.", e);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//Increment row number.
|
||||
rowNumber++;
|
||||
|
||||
}
|
||||
|
||||
return polarTable;
|
||||
}
|
||||
|
||||
}
|
||||
@ -0,0 +1,28 @@
|
||||
package seng302.Exceptions;
|
||||
|
||||
/**
|
||||
* Created by f123 on 10-May-17.
|
||||
*/
|
||||
|
||||
/**
|
||||
* An exception thrown when we cannot parse a polar data file.
|
||||
*/
|
||||
public class InvalidPolarFileException extends RuntimeException {
|
||||
|
||||
/**
|
||||
* Constructs the exception with a given message.
|
||||
* @param message Message to store.
|
||||
*/
|
||||
public InvalidPolarFileException(String message) {
|
||||
super(message);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs the exception with a given message and cause.
|
||||
* @param message Message to store.
|
||||
* @param cause Cause to store.
|
||||
*/
|
||||
public InvalidPolarFileException(String message, Throwable cause) {
|
||||
super(message, cause);
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,133 @@
|
||||
package seng302.Model;
|
||||
|
||||
/**
|
||||
* This represents an angle.
|
||||
* Has functions to return angle as either degrees or radians.
|
||||
*/
|
||||
public class Angle implements Comparable<Angle> {
|
||||
|
||||
/**
|
||||
* The angle stored in this object.
|
||||
* Degrees.
|
||||
*/
|
||||
private double degrees;
|
||||
|
||||
|
||||
/**
|
||||
* Ctor.
|
||||
* Don't use this.
|
||||
* This is protected because you need to use the static helper functions {@link #fromDegrees(double)} and {@link #fromRadians(double)} to construct an Angle object.
|
||||
*
|
||||
* @param degrees The value, in degrees, to initialize this Angle object with.
|
||||
*/
|
||||
protected Angle(double degrees) {
|
||||
this.degrees = degrees;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Constructs an Angle object from an angle value in degrees.
|
||||
* @param degrees Angle value in degrees.
|
||||
* @return Angle object.
|
||||
*/
|
||||
public static Angle fromDegrees(double degrees) {
|
||||
Angle angle = new Angle(degrees);
|
||||
return angle;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs an Angle object from an angle value in radians.
|
||||
* @param radians Angle value in radians.
|
||||
* @return Angle object.
|
||||
*/
|
||||
public static Angle fromRadians(double radians) {
|
||||
return Angle.fromDegrees(Math.toDegrees(radians));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns the value of this Angle object, in degrees.
|
||||
* @return The value of this Angle object, in degrees.
|
||||
*/
|
||||
public double degrees() {
|
||||
return this.degrees;
|
||||
}
|
||||
|
||||
public void setDegrees(double degrees) {
|
||||
this.degrees = degrees;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the value of this Angle object, in radians.
|
||||
* @return The value of this Angle object, in radians.
|
||||
*/
|
||||
public double radians() {
|
||||
return Math.toRadians(this.degrees);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns true if two Angle objects have equal values.
|
||||
* @param obj Other angle object to compare.
|
||||
* @return True if they are equal, false otherwise.
|
||||
*/
|
||||
@Override
|
||||
public boolean equals(Object obj) {
|
||||
//Cast other side.
|
||||
Angle other = (Angle) obj;
|
||||
|
||||
//Compare values.
|
||||
if (this.degrees() == other.degrees()) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns an int describing the ordering between this angle object, and another.
|
||||
* @param o Other angle to compare to.
|
||||
* @return {@literal int < 0} if this angle is less than the other angle, {@literal int > 0} if this angle is greater than the other angle, and {@literal int = 0} if this angle is equal to the other angle,
|
||||
*/
|
||||
@Override
|
||||
public int compareTo(Angle o) {
|
||||
|
||||
if (this.degrees() < o.degrees()) {
|
||||
return -1;
|
||||
} else if (this.degrees() > o.degrees()) {
|
||||
return 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Converts an angle to an angle in a given periodic interval (e.g., degrees have a periodic interval of 360, radians have a periodic interval of 2Pi) of [lowerBound, upperBound).
|
||||
* @param angle The angle to convert.
|
||||
* @param lowerBound The lower bound of the interval.
|
||||
* @param upperBound The upper bound of the interval.
|
||||
* @param period The period of the interval.
|
||||
* @return The angle in the desired periodic interval.
|
||||
*/
|
||||
public static double toPeriodicInterval(double angle, double lowerBound, double upperBound, double period) {
|
||||
|
||||
|
||||
while (angle >= upperBound) {
|
||||
//Too large.
|
||||
angle -= period;
|
||||
}
|
||||
|
||||
while (angle < lowerBound) {
|
||||
//Too small.
|
||||
angle += period;
|
||||
}
|
||||
|
||||
return angle;
|
||||
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,68 @@
|
||||
package seng302.Model;
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Represents an azimuth.
|
||||
* If treated as an absolute azimuth this is the angle between north and a target point.
|
||||
* If treated as a relative azimuth, this is the angle between from one target point to the other.
|
||||
* It has the interval [-180, 180) degrees, and clockwise is positive.
|
||||
*/
|
||||
public class Azimuth extends Angle{
|
||||
|
||||
|
||||
/**
|
||||
* Ctor.
|
||||
* This is protected because you need to use the static helper functions {@link #fromDegrees(double)} and {@link #fromRadians(double)} to construct an Azimuth object.
|
||||
*
|
||||
* @param degrees The value, in degrees, to initialize this Azimuth object with.
|
||||
*/
|
||||
protected Azimuth(double degrees) {
|
||||
super(degrees);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Converts an angle in degrees into an angle in degrees in the correct interval for an azimuth - [-180, 180).
|
||||
* E.g., converts -183 to 177, or converts 250 to -110, or converts 180 to -180.
|
||||
* @param degrees Degree value to convert.
|
||||
* @return Degree value in interval [-180, 180).
|
||||
*/
|
||||
public static double toAzimuthInterval(double degrees) {
|
||||
|
||||
return Angle.toPeriodicInterval(degrees, -180d, 180d, 360d);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs an Azimuth object from an angle value in degrees.
|
||||
* @param degrees Azimuth value in degrees.
|
||||
* @return Azimuth object.
|
||||
*/
|
||||
public static Azimuth fromDegrees(double degrees) {
|
||||
//Ensure the angle is in the correct interval.
|
||||
double degreesInInterval = Azimuth.toAzimuthInterval(degrees);
|
||||
|
||||
Azimuth azimuth = new Azimuth(degreesInInterval);
|
||||
return azimuth;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs an Azimuth object from an angle value in radians.
|
||||
* @param radians Azimuth value in radians.
|
||||
* @return Azimuth object.
|
||||
*/
|
||||
public static Azimuth fromRadians(double radians) {
|
||||
return Azimuth.fromDegrees(Math.toDegrees(radians));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Constructs an Azimuth object from a Bearing object.
|
||||
* @param bearing Bearing object to read value from.
|
||||
* @return Azimuth object.
|
||||
*/
|
||||
public static Azimuth fromBearing(Bearing bearing) {
|
||||
return Azimuth.fromDegrees(bearing.degrees());
|
||||
}
|
||||
|
||||
}
|
||||
@ -0,0 +1,66 @@
|
||||
package seng302.Model;
|
||||
|
||||
/**
|
||||
* Represents a bearing. Also known as a heading.
|
||||
* If treated as an absolute bearing this is the angle between north and a target point.
|
||||
* If treated as a relative bearing, this is the angle between from one target point to the other.
|
||||
* Has the interval [0, 360) degrees, and clockwise is positive.
|
||||
*/
|
||||
public class Bearing extends Angle {
|
||||
|
||||
|
||||
/**
|
||||
* Ctor.
|
||||
* This is protected because you need to use the static helper functions {@link #fromDegrees(double)} and {@link #fromRadians(double)} to construct a Bearing object.
|
||||
*
|
||||
* @param degrees The value, in degrees, to initialize this Bearing object with.
|
||||
*/
|
||||
protected Bearing(double degrees) {
|
||||
super(degrees);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Converts an angle in degrees into an angle in degrees in the correct interval for a bearing - [0, 360).
|
||||
* E.g., converts -183 to 177, or converts 425 to 65.
|
||||
* @param degrees Degree value to convert.
|
||||
* @return Degree value in interval [0, 360).
|
||||
*/
|
||||
public static double toBearingInterval(double degrees) {
|
||||
|
||||
return Angle.toPeriodicInterval(degrees, -0d, 360d, 360d);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a Bearing object from an angle value in degrees.
|
||||
* @param degrees Bearing value in degrees.
|
||||
* @return Bearing object.
|
||||
*/
|
||||
public static Bearing fromDegrees(double degrees) {
|
||||
//Ensure the angle is in the correct interval.
|
||||
double degreesInInterval = Bearing.toBearingInterval(degrees);
|
||||
|
||||
Bearing bearing = new Bearing(degreesInInterval);
|
||||
return bearing;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a Bearing object from an angle value in radians.
|
||||
* @param radians Bearing value in radians.
|
||||
* @return Bearing object.
|
||||
*/
|
||||
public static Bearing fromRadians(double radians) {
|
||||
return Bearing.fromDegrees(Math.toDegrees(radians));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Constructs a Bearing object from an Azimuth object.
|
||||
* @param azimuth Azimuth object to read value from.
|
||||
* @return Bearing object.
|
||||
*/
|
||||
public static Bearing fromAzimuth(Azimuth azimuth) {
|
||||
return Bearing.fromDegrees(azimuth.degrees());
|
||||
}
|
||||
|
||||
}
|
||||
@ -1,154 +1,445 @@
|
||||
package seng302.Model;
|
||||
|
||||
import org.geotools.referencing.GeodeticCalculator;
|
||||
import seng302.Constants;
|
||||
import seng302.Networking.Messages.Enums.BoatStatusEnum;
|
||||
|
||||
|
||||
/**
|
||||
* Created by esa46 on 1/05/17.
|
||||
* Boat Model that is used to store information on the boats that are running in the race.
|
||||
*/
|
||||
public class Boat {
|
||||
/**
|
||||
* The name of the boat/team.
|
||||
*/
|
||||
private String name;
|
||||
private double velocity;
|
||||
private double scaledVelocity;
|
||||
|
||||
/**
|
||||
* The current speed of the boat, in knots.
|
||||
* TODO knots
|
||||
*/
|
||||
private double currentSpeed;
|
||||
|
||||
/**
|
||||
* The current bearing/heading of the boat.
|
||||
*/
|
||||
private Bearing bearing;
|
||||
|
||||
/**
|
||||
* The current position of the boat.
|
||||
*/
|
||||
private GPSCoordinate currentPosition;
|
||||
|
||||
/**
|
||||
* The country or team abbreviation of the boat.
|
||||
*/
|
||||
private String country;
|
||||
|
||||
/**
|
||||
* The source ID of the boat.
|
||||
* This uniquely identifies an entity during a race.
|
||||
*/
|
||||
private int sourceID;
|
||||
|
||||
/**
|
||||
* The leg of the race that the boat is currently on.
|
||||
*/
|
||||
private Leg currentLeg;
|
||||
|
||||
/**
|
||||
* The distance, in meters, that the boat has travelled in the current leg.
|
||||
* TODO meters
|
||||
*/
|
||||
private double distanceTravelledInLeg;
|
||||
private GPSCoordinate currentPosition;
|
||||
|
||||
/**
|
||||
* The time, in milliseconds, that has elapsed during the current leg.
|
||||
* TODO milliseconds
|
||||
*/
|
||||
private long timeElapsedInCurrentLeg;
|
||||
|
||||
/**
|
||||
* The timestamp, in milliseconds, of when the boat finished the race.
|
||||
* Is -1 if it hasn't finished.
|
||||
* TODO milliseconds
|
||||
*/
|
||||
private long timeFinished = -1;
|
||||
private boolean started = false;
|
||||
private double heading;
|
||||
|
||||
/**
|
||||
* Boat initialiser which keeps all of the information of the boat.
|
||||
* The current status of the boat.
|
||||
*/
|
||||
private BoatStatusEnum status;
|
||||
|
||||
/**
|
||||
* This stores a boat's polars table.
|
||||
* Can be used to calculate VMG.
|
||||
*/
|
||||
private Polars polars;
|
||||
|
||||
/**
|
||||
* This stores the milliseconds since the boat has changed its tack, to allow for only updating the tack every X milliseconds.
|
||||
* TODO milliseconds
|
||||
*/
|
||||
private long timeSinceTackChange = 0;
|
||||
|
||||
|
||||
/**
|
||||
* Constructs a boat object with a given sourceID, name, country/team abbreviation, and polars table.
|
||||
*
|
||||
* @param sourceID id of boat
|
||||
* @param name Name of the Boat.
|
||||
* @param country nam abbreviation
|
||||
* @param sourceID The id of the boat
|
||||
* @param name The name of the Boat.
|
||||
* @param country The abbreviation or country code for the boat.
|
||||
* @param polars The polars table to use for this boat.
|
||||
*/
|
||||
public Boat(int sourceID, String name, String country) {
|
||||
this.country = this.country;
|
||||
public Boat(int sourceID, String name, String country, Polars polars) {
|
||||
this.country = country;
|
||||
this.name = name;
|
||||
this.sourceID = sourceID;
|
||||
this.polars = polars;
|
||||
|
||||
this.bearing = Bearing.fromDegrees(0d);
|
||||
|
||||
this.status = BoatStatusEnum.UNDEFINED;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Calculates the azimuth of the travel via map coordinates of the raceMarkers
|
||||
*
|
||||
* @return the direction that the boat is heading towards in degrees (-180 to 180).
|
||||
* Calculate the bearing of the boat to its next marker.
|
||||
* @return The bearing to the next marker.
|
||||
*/
|
||||
public double calculateAzimuth() {
|
||||
public Bearing calculateBearingToNextMarker() {
|
||||
|
||||
GeodeticCalculator calc = new GeodeticCalculator();
|
||||
GPSCoordinate start = currentLeg.getStartCompoundMark().getAverageGPSCoordinate();
|
||||
GPSCoordinate end = currentLeg.getEndCompoundMark().getAverageGPSCoordinate();
|
||||
//Get the start and end points.
|
||||
GPSCoordinate currentPosition = this.getCurrentPosition();
|
||||
GPSCoordinate nextMarkerPosition = this.getCurrentLeg().getEndCompoundMark().getAverageGPSCoordinate();
|
||||
|
||||
calc.setStartingGeographicPoint(start.getLongitude(), start.getLatitude());
|
||||
calc.setDestinationGeographicPoint(end.getLongitude(), end.getLatitude());
|
||||
//Calculate bearing.
|
||||
Bearing bearing = GPSCoordinate.calculateBearing(currentPosition, nextMarkerPosition);
|
||||
|
||||
return calc.getAzimuth();
|
||||
return bearing;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Calculate the heding depending on the calculated azimuth value
|
||||
* @return The azimuth value which is greater than 0
|
||||
* Calculates the distance between the boat and its target marker in nautical miles.
|
||||
* @return The distance (in nautical miles) between the boat and its target marker.
|
||||
*/
|
||||
public double calculateHeading() {
|
||||
double azimuth = this.calculateAzimuth();
|
||||
public double calculateDistanceToNextMarker() {
|
||||
|
||||
//Get start and end markers.
|
||||
GPSCoordinate startPosition = this.getCurrentPosition();
|
||||
|
||||
if (azimuth >= 0) {
|
||||
return azimuth;
|
||||
} else {
|
||||
return azimuth + 360;
|
||||
//When boats finish, their "current leg" doesn't have an end marker.
|
||||
if (this.getCurrentLeg().getEndCompoundMark() == null) {
|
||||
return 0d;
|
||||
}
|
||||
|
||||
GPSCoordinate endMarker = this.getCurrentLeg().getEndCompoundMark().getAverageGPSCoordinate();
|
||||
|
||||
|
||||
//Calculate distance.
|
||||
double distanceNauticalMiles = GPSCoordinate.calculateDistanceNauticalMiles(startPosition, endMarker);
|
||||
|
||||
return distanceNauticalMiles;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the name of the boat/team.
|
||||
* @return Name of the boat/team.
|
||||
*/
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the name of the boat/team.
|
||||
* @param name Name of the boat/team.
|
||||
*/
|
||||
public void setName(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
public double getVelocity() {
|
||||
return velocity;
|
||||
}
|
||||
|
||||
public void setVelocity(double velocity) {
|
||||
this.velocity = velocity;
|
||||
/**
|
||||
* Returns the current speed of the boat, in knots.
|
||||
* @return The current speed of the boat, in knots.
|
||||
*/
|
||||
public double getCurrentSpeed() {
|
||||
return currentSpeed;
|
||||
}
|
||||
|
||||
public double getScaledVelocity() {
|
||||
return scaledVelocity;
|
||||
/**
|
||||
* Sets the speed of the boat, in knots.
|
||||
* @param currentSpeed The new speed of the boat, in knots.
|
||||
*/
|
||||
public void setCurrentSpeed(double currentSpeed) {
|
||||
this.currentSpeed = currentSpeed;
|
||||
}
|
||||
|
||||
public void setScaledVelocity(double scaledVelocity) {
|
||||
this.scaledVelocity = scaledVelocity;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the country/team abbreviation of the boat.
|
||||
* @return The country/team abbreviation of the boat.
|
||||
*/
|
||||
public String getCountry() {
|
||||
return country;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the country/team abbreviation of the boat.
|
||||
* @param country The new country/team abbreviation for the boat.
|
||||
*/
|
||||
public void setCountry(String country) {
|
||||
this.country = country;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the source ID of the boat.
|
||||
* @return The source ID of the boat.
|
||||
*/
|
||||
public int getSourceID() {
|
||||
return sourceID;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the source ID of the boat.
|
||||
* @param sourceID The new source ID for the boat.
|
||||
*/
|
||||
public void setSourceID(int sourceID) {
|
||||
this.sourceID = sourceID;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the current leg of the race the boat is in.
|
||||
* @return The current leg of the race the boat is in.
|
||||
*/
|
||||
public Leg getCurrentLeg() {
|
||||
return currentLeg;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the current leg of the race the boat is in.
|
||||
* Clears time elapsed in current leg and distance travelled in current leg.
|
||||
* @param currentLeg The new leg of the race the boat is in.
|
||||
*/
|
||||
public void setCurrentLeg(Leg currentLeg) {
|
||||
this.currentLeg = currentLeg;
|
||||
this.setTimeElapsedInCurrentLeg(0);
|
||||
this.setDistanceTravelledInLeg(0);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the distance, in meters, the boat has travelled in the current leg.
|
||||
* @return The distance, in meters, the boat has travelled in the current leg.
|
||||
*/
|
||||
public double getDistanceTravelledInLeg() {
|
||||
return distanceTravelledInLeg;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the distance, in meters, the boat has travelled in the current leg.
|
||||
* @param distanceTravelledInLeg The distance, in meters, the boat has travelled in the current leg.
|
||||
*/
|
||||
public void setDistanceTravelledInLeg(double distanceTravelledInLeg) {
|
||||
this.distanceTravelledInLeg = distanceTravelledInLeg;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the current position of the boat.
|
||||
* @return The current position of the boat.
|
||||
*/
|
||||
public GPSCoordinate getCurrentPosition() {
|
||||
return currentPosition;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the current position of the boat.
|
||||
* @param currentPosition The new position for the boat.
|
||||
*/
|
||||
public void setCurrentPosition(GPSCoordinate currentPosition) {
|
||||
this.currentPosition = currentPosition;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Gets the timestamp, in milliseconds, at which the boat finished the race.
|
||||
* @return The timestamp, in milliseconds, at which the boat finished the race.
|
||||
*/
|
||||
public long getTimeFinished() {
|
||||
return timeFinished;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the timestamp, in milliseconds, at which the boat finished the race.
|
||||
* @param timeFinished The timestamp, in milliseconds, at which the boat finished the race.
|
||||
*/
|
||||
public void setTimeFinished(long timeFinished) {
|
||||
this.timeFinished = timeFinished;
|
||||
}
|
||||
|
||||
public boolean isStarted() {
|
||||
return started;
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns the current bearing of the boat.
|
||||
* @return The current bearing of the boat.
|
||||
*/
|
||||
public Bearing getBearing() {
|
||||
return bearing;
|
||||
}
|
||||
|
||||
public void setStarted(boolean started) {
|
||||
this.started = started;
|
||||
/**
|
||||
* Sets the current bearing of the boat.
|
||||
* @param bearing The new bearing of the boat.
|
||||
*/
|
||||
public void setBearing(Bearing bearing) {
|
||||
this.bearing = bearing;
|
||||
}
|
||||
|
||||
public double getHeading() {
|
||||
return heading;
|
||||
|
||||
/**
|
||||
* Returns the polars table for this boat.
|
||||
* @return The polars table for this boat.
|
||||
*/
|
||||
public Polars getPolars() {
|
||||
return polars;
|
||||
}
|
||||
|
||||
public void setHeading(double heading) {
|
||||
this.heading = heading;
|
||||
/**
|
||||
* Sets the polars table for this boat.
|
||||
* @param polars The new polars table for this boat.
|
||||
*/
|
||||
public void setPolars(Polars polars) {
|
||||
this.polars = polars;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the time since the boat changed its tack, in milliseconds.
|
||||
* @return Time since the boat changed its tack, in milliseconds.
|
||||
*/
|
||||
public long getTimeSinceTackChange() {
|
||||
return timeSinceTackChange;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the time since the boat changed it's tack, in milliseconds.
|
||||
* @param timeSinceTackChange Time since the boat changed its tack, in milliseconds.
|
||||
*/
|
||||
public void setTimeSinceTackChange(long timeSinceTackChange) {
|
||||
this.timeSinceTackChange = timeSinceTackChange;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the time, in milliseconds, that has elapsed since the boat started the current leg.
|
||||
* @return The time, in milliseconds, that has elapsed since the boat started the current leg.
|
||||
*/
|
||||
public long getTimeElapsedInCurrentLeg() {
|
||||
return timeElapsedInCurrentLeg;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the time, in milliseconds, that has elapsed since the boat started the current leg.
|
||||
* @param timeElapsedInCurrentLeg The new time, in milliseconds, that has elapsed since the boat started the current leg.
|
||||
*/
|
||||
public void setTimeElapsedInCurrentLeg(long timeElapsedInCurrentLeg) {
|
||||
this.timeElapsedInCurrentLeg = timeElapsedInCurrentLeg;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the status of the boat.
|
||||
* @return The sttus of the boat.
|
||||
*/
|
||||
public BoatStatusEnum getStatus() {
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the status of the boat.
|
||||
* @param status The new status of the boat.
|
||||
*/
|
||||
public void setStatus(BoatStatusEnum status) {
|
||||
this.status = status;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Moves the boat meters forward in the direction that it is facing
|
||||
* @param meters The number of meters to move forward.
|
||||
* @param milliseconds The number of milliseconds to advance the boat's timers by.
|
||||
*/
|
||||
public void moveForwards(double meters, long milliseconds) {
|
||||
|
||||
|
||||
//Update the boat's time since last tack.
|
||||
this.setTimeSinceTackChange(this.getTimeSinceTackChange() + milliseconds);
|
||||
|
||||
//Update the time into the current leg.
|
||||
this.setTimeElapsedInCurrentLeg(this.getTimeElapsedInCurrentLeg() + milliseconds);
|
||||
|
||||
//Update the distance into the current leg.
|
||||
this.setDistanceTravelledInLeg(this.getDistanceTravelledInLeg() + meters);
|
||||
|
||||
//Updates the current position of the boat.
|
||||
GPSCoordinate newPosition = GPSCoordinate.calculateNewPosition(this.getCurrentPosition(), meters, Azimuth.fromBearing(this.getBearing()));
|
||||
this.setCurrentPosition(newPosition);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Sets the boats speed and bearing to those in the given VMG.
|
||||
* @param newVMG The new VMG to use for the boat - contains speed and bearing.
|
||||
*/
|
||||
public void setVMG(VMG newVMG) {
|
||||
this.setBearing(newVMG.getBearing());
|
||||
this.setCurrentSpeed(newVMG.getSpeed());
|
||||
this.setTimeSinceTackChange(0);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Calculates the number of nautical miles the boat will travel in a given time slice.
|
||||
* E.g., in 53 milliseconds a boat may travel 0.0002 nautical miles.
|
||||
* @param timeSlice The timeslice to use.
|
||||
* @return The distance travelled, in nautical miles, over the given timeslice.
|
||||
*/
|
||||
public double calculateNauticalMilesTravelled(long timeSlice) {
|
||||
|
||||
//The proportion of one hour the current timeslice is.
|
||||
//This will be a low fractional number, so we need to go from long -> double.
|
||||
double hourProportion = ((double) timeSlice) / Constants.OneHourMilliseconds;
|
||||
|
||||
//Calculates the distance travelled, in nautical miles, in the current timeslice.
|
||||
//distanceTravelledNM = speed (nm p hr) * time taken to update loop
|
||||
double distanceTravelledNM = this.getCurrentSpeed() * hourProportion;
|
||||
|
||||
return distanceTravelledNM;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the number of meters the boat will travel in a given time slice.
|
||||
* E.g., in 53 milliseconds a boat may travel 0.02 meters.
|
||||
* @param timeSlice The timeslice to use.
|
||||
* @return The distance travelled, in meters, over the given timeslice.
|
||||
*/
|
||||
public double calculateMetersTravelled(long timeSlice) {
|
||||
|
||||
//Calculate the distance travelled, in nautical miles.
|
||||
double distanceTravelledNM = this.calculateNauticalMilesTravelled(timeSlice);
|
||||
|
||||
//Convert to meters.
|
||||
double distanceTravelledMeters = distanceTravelledNM * Constants.NMToMetersConversion;
|
||||
|
||||
return distanceTravelledMeters;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -1,61 +1,110 @@
|
||||
package seng302.Model;
|
||||
|
||||
import org.geotools.referencing.GeodeticCalculator;
|
||||
import java.awt.geom.Point2D;
|
||||
|
||||
/**
|
||||
* Created by esa46 on 29/03/17.
|
||||
* Represents a compound mark - that is, either one or two individual marks which form a single compound mark.
|
||||
*/
|
||||
public class CompoundMark extends Marker{
|
||||
public class CompoundMark {
|
||||
|
||||
private GPSCoordinate averageGPSCoordinate;
|
||||
/**
|
||||
* The first mark in the compound mark.
|
||||
*/
|
||||
private Mark mark1;
|
||||
private Mark mark2 = null;
|
||||
|
||||
/**
|
||||
* The second mark in the compound mark.
|
||||
*/
|
||||
private Mark mark2;
|
||||
|
||||
/**
|
||||
* The average coordinate of the compound mark.
|
||||
*/
|
||||
private GPSCoordinate averageGPSCoordinate;
|
||||
|
||||
|
||||
/**
|
||||
* Constructs a compound mark from a single mark.
|
||||
* @param mark1 The individual mark that comprises this compound mark.
|
||||
*/
|
||||
public CompoundMark(Mark mark1) {
|
||||
super(mark1.getPosition());
|
||||
this.mark1 = mark1;
|
||||
this.averageGPSCoordinate = calculateAverage();
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Constructs a compound mark from a pair of marks.
|
||||
* @param mark1 The first individual mark that comprises this compound mark.
|
||||
* @param mark2 The second individual mark that comprises this compound mark.
|
||||
*/
|
||||
public CompoundMark(Mark mark1, Mark mark2) {
|
||||
super(mark1.getPosition(), mark2.getPosition());
|
||||
this.mark1 = mark1;
|
||||
this.mark2 = mark2;
|
||||
this.averageGPSCoordinate = calculateAverage();
|
||||
|
||||
}
|
||||
|
||||
public Mark getMark1Source() { return mark1; }
|
||||
|
||||
public Mark getMark2Source() { return mark2; }
|
||||
/**
|
||||
* Returns the first mark of the compound mark.
|
||||
* @return The first mark of the compound mark.
|
||||
*/
|
||||
public Mark getMark1() {
|
||||
return mark1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the second mark of the compound mark.
|
||||
* @return The second mark of the compound mark.
|
||||
*/
|
||||
public Mark getMark2() {
|
||||
return mark2;
|
||||
}
|
||||
|
||||
public GPSCoordinate getMark1() {
|
||||
|
||||
/**
|
||||
* Returns the position of the first mark in the compound mark.
|
||||
* @return The position of the first mark in the compound mark.
|
||||
*/
|
||||
public GPSCoordinate getMark1Position() {
|
||||
return mark1.getPosition();
|
||||
}
|
||||
|
||||
public GPSCoordinate getMark2() {
|
||||
/**
|
||||
* Returns the position of the second mark in the compound mark.
|
||||
* @return The position of the second mark in the compound mark.
|
||||
*/
|
||||
public GPSCoordinate getMark2Position() {
|
||||
return mark2.getPosition();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the average coordinate of the compound mark.
|
||||
* @return The average coordinate of the compound mark.
|
||||
*/
|
||||
public GPSCoordinate getAverageGPSCoordinate() {
|
||||
return averageGPSCoordinate;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Calculates the average coordinate of the compound mark.
|
||||
* @return The average coordinate of the compound mark.
|
||||
*/
|
||||
private GPSCoordinate calculateAverage() {
|
||||
if(mark2 != null) {
|
||||
GeodeticCalculator calc = new GeodeticCalculator();
|
||||
calc.setStartingGeographicPoint(mark1.getPosition().getLongitude(), mark1.getPosition().getLatitude());
|
||||
calc.setDestinationGeographicPoint(mark2.getPosition().getLongitude(), mark2.getPosition().getLatitude());
|
||||
double azimuth = calc.getAzimuth();
|
||||
double distance = calc.getOrthodromicDistance();
|
||||
|
||||
GeodeticCalculator middleCalc = new GeodeticCalculator();
|
||||
middleCalc.setStartingGeographicPoint(mark1.getPosition().getLongitude(), mark1.getPosition().getLatitude());
|
||||
middleCalc.setDirection(azimuth, distance / 2);
|
||||
Point2D middlePoint = middleCalc.getDestinationGeographicPoint();
|
||||
return new GPSCoordinate(middlePoint.getY(), middlePoint.getX());
|
||||
} else return mark1.getPosition();
|
||||
|
||||
//If the compound mark only contains one mark, the average is simply the first mark's position.
|
||||
if (this.mark2 == null) {
|
||||
return this.getMark1Position();
|
||||
}
|
||||
|
||||
|
||||
//Otherwise, calculate the average of both marks.
|
||||
GPSCoordinate averageCoordinate = GPSCoordinate.calculateAverageCoordinate(this.getMark1Position(), this.getMark2Position());
|
||||
|
||||
return averageCoordinate;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,28 +1,64 @@
|
||||
package seng302.Model;
|
||||
|
||||
/**
|
||||
* Created by cbt24 on 10/05/17.
|
||||
* Represents an individual mark.
|
||||
* Has a source ID, name, and position.
|
||||
*/
|
||||
public class Mark {
|
||||
|
||||
/**
|
||||
* The source ID of the mark.
|
||||
*/
|
||||
private int sourceID;
|
||||
|
||||
/**
|
||||
* The name of the mark.
|
||||
*/
|
||||
private String name;
|
||||
|
||||
/**
|
||||
* The position of the mark.
|
||||
*/
|
||||
private GPSCoordinate position;
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Constructs a mark with a given source ID, name, and position.
|
||||
* @param sourceID The source ID of the mark.
|
||||
* @param name The name of the mark.
|
||||
* @param position The position of the mark.
|
||||
*/
|
||||
public Mark(int sourceID, String name, GPSCoordinate position) {
|
||||
this.sourceID = sourceID;
|
||||
this.name = name;
|
||||
this.position = position;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the name of the mark.
|
||||
* @return The name of the mark.
|
||||
*/
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the source ID of the mark.
|
||||
* @return The source ID of the mark.
|
||||
*/
|
||||
public int getSourceID() {
|
||||
return sourceID;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the position of the mark.
|
||||
* @return The position of the mark.
|
||||
*/
|
||||
public GPSCoordinate getPosition() {
|
||||
return position;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
@ -1,74 +0,0 @@
|
||||
package seng302.Model;
|
||||
|
||||
import org.geotools.referencing.GeodeticCalculator;
|
||||
import java.awt.geom.Point2D;
|
||||
|
||||
/**
|
||||
* Created by esa46 on 29/03/17.
|
||||
*/
|
||||
public class Marker {
|
||||
|
||||
private GPSCoordinate averageGPSCoordinate;
|
||||
private GPSCoordinate mark1;
|
||||
private GPSCoordinate mark2;
|
||||
private String name;
|
||||
private boolean doubleMarker = false;
|
||||
|
||||
public Marker(GPSCoordinate mark1) {
|
||||
|
||||
this.mark1 = mark1;
|
||||
this.mark2 = mark1;
|
||||
this.averageGPSCoordinate = calculateAverage();
|
||||
|
||||
}
|
||||
|
||||
public Marker(GPSCoordinate mark1, GPSCoordinate mark2) {
|
||||
|
||||
this.mark1 = mark1;
|
||||
this.mark2 = mark2;
|
||||
this.averageGPSCoordinate = calculateAverage();
|
||||
|
||||
}
|
||||
|
||||
public Marker(String name, GPSCoordinate mark1, GPSCoordinate mark2) {
|
||||
|
||||
this.name = name;
|
||||
this.mark1 = mark1;
|
||||
this.mark2 = mark2;
|
||||
this.averageGPSCoordinate = calculateAverage();
|
||||
|
||||
}
|
||||
|
||||
public GPSCoordinate getMark1() {
|
||||
return mark1;
|
||||
}
|
||||
|
||||
public GPSCoordinate getMark2() {
|
||||
return mark2;
|
||||
}
|
||||
|
||||
public GPSCoordinate getAverageGPSCoordinate() {
|
||||
return averageGPSCoordinate;
|
||||
}
|
||||
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
private GPSCoordinate calculateAverage() {
|
||||
|
||||
GeodeticCalculator calc = new GeodeticCalculator();
|
||||
calc.setStartingGeographicPoint(mark1.getLongitude(), mark1.getLatitude());
|
||||
calc.setDestinationGeographicPoint(mark2.getLongitude(), mark2.getLatitude());
|
||||
double azimuth = calc.getAzimuth();
|
||||
double distance = calc.getOrthodromicDistance();
|
||||
|
||||
GeodeticCalculator middleCalc = new GeodeticCalculator();
|
||||
middleCalc.setStartingGeographicPoint(mark1.getLongitude(), mark1.getLatitude());
|
||||
middleCalc.setDirection(azimuth, distance / 2);
|
||||
Point2D middlePoint = middleCalc.getDestinationGeographicPoint();
|
||||
return new GPSCoordinate(middlePoint.getY(), middlePoint.getX());
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
@ -0,0 +1,394 @@
|
||||
package seng302.Model;
|
||||
|
||||
import javafx.util.Pair;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
/**
|
||||
* Created by hba56 on 10/05/17.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Encapsulates an entire polar table. Has a function to calculate VMG.
|
||||
*/
|
||||
public class Polars {
|
||||
|
||||
/**
|
||||
* Internal store of data. Maps {@literal Pair<windSpeed, windAngle>} to boatSpeed.
|
||||
*/
|
||||
private Map<Pair<Double, Bearing>, Double> polarValues = new HashMap<>();
|
||||
|
||||
|
||||
/**
|
||||
* Stores a list of angles from the polar table - this is used during the calculateVMG function.
|
||||
* Maps between windSpeed and a list of angles for that wind speed.
|
||||
*/
|
||||
private HashMap<Double, List<Bearing>> polarAngles = new HashMap<>();
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Ctor.
|
||||
*/
|
||||
public Polars() {
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Adds an estimated velocity to the polar table object, for a given (windSpeed, windAngle) pair. That is, stores a mapping from (windSpeed, windAngle) to (boatVelocity).
|
||||
* Note: an estimate means given a specific wind speed of trueWindSpeed, if the boat travels relativeWindAngle degrees towards the wind, it will move at boatSpeed knots. E.g., trueWindSpeed = 20kn, relativeWindAngle = 45 degrees, boatSpeed = 25kn. If the boat travels towards the wind, plus or minus 45 degrees either side, it will move at 25kn.
|
||||
* @param trueWindSpeed The true wind speed of the estimate.
|
||||
* @param relativeWindAngle The relative wind angle between the wind direction + 180 degrees and the boat's direction of the estimate.
|
||||
* @param boatSpeed The boat speed of the estimate.
|
||||
*/
|
||||
public void addEstimate(double trueWindSpeed, Bearing relativeWindAngle, double boatSpeed) {
|
||||
|
||||
//We also add the same values with a complementary angle (e.g., angle = 50, complement = 360 - 50 = 310). This is because the data file contains angles [0, 180), but we need [0, 360).
|
||||
|
||||
//Create the array to store angles for this wind speed if it doesn't exist.
|
||||
if (!this.polarAngles.containsKey(trueWindSpeed)) {
|
||||
this.polarAngles.put(trueWindSpeed, new ArrayList<>());
|
||||
}
|
||||
|
||||
//Add estimate to map.
|
||||
Pair<Double, Bearing> newKeyPositive = new Pair<>(trueWindSpeed, relativeWindAngle);
|
||||
this.polarValues.put(newKeyPositive, boatSpeed);
|
||||
|
||||
//Get the "negative" bearing - that is, the equivalent bearing between [180, 360).
|
||||
Bearing negativeBearing = Bearing.fromDegrees(360d - relativeWindAngle.degrees());
|
||||
|
||||
|
||||
//Ensure that the positive and negative angles aren't the same (e.g., pos = 0, neg = 360 - 0 = 0.
|
||||
if (!negativeBearing.equals(relativeWindAngle)) {
|
||||
Pair<Double, Bearing> newKeyNegative = new Pair<>(trueWindSpeed, negativeBearing);
|
||||
this.polarValues.put(newKeyNegative, boatSpeed);
|
||||
}
|
||||
|
||||
|
||||
//Add angle to angle list. Don't add if it already contains them.
|
||||
if (!this.polarAngles.get(trueWindSpeed).contains(relativeWindAngle)) {
|
||||
this.polarAngles.get(trueWindSpeed).add(relativeWindAngle);
|
||||
}
|
||||
|
||||
if (!this.polarAngles.get(trueWindSpeed).contains(negativeBearing)) {
|
||||
this.polarAngles.get(trueWindSpeed).add(negativeBearing);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Calculates the VMG for a given wind angle, wind speed, and angle to destination. Will only return VMGs that have a true bearing (angle) within a given bound - this is to ensure that you can calculate VMGs without going out of bounds.
|
||||
* <br>
|
||||
* If you don't care about bearing bounds, simply pass in lower = 0, upper = 359.9.
|
||||
* <br>
|
||||
* Passing in lower = 0, upper = 0, or lower = 0, upper = 360 will both be treated the same as lower = 0, upper = 359.99999.
|
||||
* <br><br>
|
||||
* The resulting angle of the VMG will be within the interval [bearingLowerBound, bearingUpperBound].
|
||||
* <br><br>
|
||||
* If the lower bound is greater than the upper bound (e.g., lower = 70, upper = 55), then it checks that {@literal VMGAngle >= lower OR VMGAngle <= upper} (e.g., {@literal [70, 55] means angle >= 70, OR angle =< 55}).
|
||||
* <br><br>
|
||||
* Returns a VMG with 0 speed and 0 bearing if there are no VMGs with {@literal velocity > 0} in the acceptable bearing bounds.
|
||||
* @param trueWindAngle The current true wind angle.
|
||||
* @param trueWindSpeed The current true wind speed. Knots.
|
||||
* @param destinationAngle The angle between the boat and the destination point.
|
||||
* @param bearingLowerBound The lowest bearing (angle) that the boat may travel on.
|
||||
* @param bearingUpperBound The highest bearing (angle) that the boat may travel on.
|
||||
* @return The VMG.
|
||||
*/
|
||||
public VMG calculateVMG(Bearing trueWindAngle, double trueWindSpeed, Bearing destinationAngle, Bearing bearingLowerBound, Bearing bearingUpperBound) {
|
||||
|
||||
//Sorts polar angles.
|
||||
for (List<Bearing> angles : this.polarAngles.values()) {
|
||||
angles.sort(null);
|
||||
}
|
||||
|
||||
|
||||
//If the user enters [0, 360] for their bounds, there won't be any accepted angles, as Bearing(360) turn into Bearing(0) (it has the interval [0, 360)).
|
||||
//So if both bearing bounds are zero, we assume that the user wanted [0, 360) for the interval.
|
||||
//So, we give them Bearing(359.99999) as the upper bound.
|
||||
if ((bearingLowerBound.degrees() == 0d) && (bearingUpperBound.degrees() == 0d)) {
|
||||
bearingUpperBound = Bearing.fromDegrees(359.99999d);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//If the lower bound is greater than the upper bound, we have a "flipped" interval. That is for, e.g., [70, 55] the lower bound is greater than the upper bound, and so it checks that (VMGAngle >= 70 OR VMGAngle =< 55), instead of (VMGAngle >= 70 AND VMGAngle =< 55).
|
||||
boolean flippedInterval = false;
|
||||
if (bearingLowerBound.degrees() > bearingUpperBound.degrees()) {
|
||||
flippedInterval = true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//We need to find the upper and lower wind speeds from the Polars table, for a given current wind speed (e.g., current wind speed is 11kn, therefore lower = 8kn, upper = 12kn).
|
||||
double polarWindSpeedLowerBound = 0d;
|
||||
double polarWindSpeedUpperBound = 9999999d;//Start this off with a value larger than any in the Polars table so that it actually works.
|
||||
//This indicates whether or not we've managed to find a wind speed larger than the current wind speed (the upper bound) in the Polars table (in cases where the current wind speed is larger than any in the file we will never find an upper bound).
|
||||
boolean foundUpperBoundWindSpeed = false;
|
||||
boolean foundLowerBoundWindSpeed = false;
|
||||
for (Pair<Double, Bearing> key : this.polarValues.keySet()) {
|
||||
|
||||
//The key is Pair<windSpeed, windAngle>, so pair.key is windSpeed.
|
||||
double currentPolarSpeed = key.getKey();
|
||||
|
||||
//Lower bound.
|
||||
if ((currentPolarSpeed >= polarWindSpeedLowerBound) && (currentPolarSpeed <= trueWindSpeed)) {
|
||||
polarWindSpeedLowerBound = currentPolarSpeed;
|
||||
foundLowerBoundWindSpeed = true;
|
||||
}
|
||||
|
||||
//Upper bound.
|
||||
if ((currentPolarSpeed < polarWindSpeedUpperBound) && (currentPolarSpeed > trueWindSpeed)) {
|
||||
polarWindSpeedUpperBound = currentPolarSpeed;
|
||||
foundUpperBoundWindSpeed = true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
//Find the angle with the best VMG.
|
||||
//We need to find the VMGs for both lower and upper bound wind speeds, and interpolate between them.
|
||||
List<VMG> vmgs = new ArrayList<>();
|
||||
|
||||
//Put wind speed bounds we found above into a list.
|
||||
List<Double> windSpeedBounds = new ArrayList<>(2);
|
||||
|
||||
if (foundLowerBoundWindSpeed) {
|
||||
windSpeedBounds.add(polarWindSpeedLowerBound);
|
||||
}
|
||||
if (foundUpperBoundWindSpeed) {
|
||||
windSpeedBounds.add(polarWindSpeedUpperBound);
|
||||
}
|
||||
|
||||
|
||||
//Calculate VMG for any wind speed bounds we found.
|
||||
for (double polarWindSpeed : windSpeedBounds) {
|
||||
|
||||
//The list of polar angles for this wind speed.
|
||||
List<Bearing> polarAngles = this.polarAngles.get(polarWindSpeed);
|
||||
|
||||
|
||||
double bestVMGVelocity = 0;
|
||||
double bestVMGSpeed = 0;
|
||||
Bearing bestVMGAngle = Bearing.fromDegrees(0d);
|
||||
|
||||
//Calculate the VMG for all possible angles at this wind speed.
|
||||
for (double angleDegree = 0; angleDegree < 360; angleDegree += 0.1) {
|
||||
Bearing angle = Bearing.fromDegrees(angleDegree);
|
||||
|
||||
//This is the true bearing of the boat, if it went at the angle against the wind.
|
||||
//For angle < 90 OR angle > 270, it means that the boat is going into the wind (tacking).
|
||||
//For angle > 90 AND angle < 270, it means that the boat is actually going with the wind (gybing).
|
||||
double trueBoatBearingDegrees = trueWindAngle.degrees() + angle.degrees() + 180d;
|
||||
Bearing trueBoatBearing = Bearing.fromDegrees(trueBoatBearingDegrees);
|
||||
|
||||
|
||||
//Check that the boat's bearing would actually be acceptable.
|
||||
//We continue (skip to next iteration) if it is outside of the interval.
|
||||
if (flippedInterval) {
|
||||
//Bearing must be inside [lower, upper], where lower > upper. So, bearing must be >= lower, or bearing < upper. We use inverted logic since we are skipping if it is true.
|
||||
if ((trueBoatBearing.degrees() < bearingLowerBound.degrees()) & (trueBoatBearing.degrees() > bearingUpperBound.degrees())) {
|
||||
continue;
|
||||
}
|
||||
|
||||
} else {
|
||||
//Bearing must be inside [lower, upper].
|
||||
if ((trueBoatBearing.degrees() < bearingLowerBound.degrees()) || (trueBoatBearing.degrees() > bearingUpperBound.degrees())) {
|
||||
continue;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
//Basic linear interpolation. Find the nearest two angles from the table, and interpolate between them.
|
||||
|
||||
//Check which pair of adjacent angles the angle is between.
|
||||
boolean foundAdjacentAngles = false;
|
||||
Bearing lowerBound = Bearing.fromDegrees(0d);
|
||||
Bearing upperBound = Bearing.fromDegrees(0d);
|
||||
for (int i = 0; i < polarAngles.size() - 1; i++) {
|
||||
Bearing currentAngle = polarAngles.get(i);
|
||||
Bearing nextAngle = polarAngles.get(i + 1);
|
||||
//Check that angle is in interval [lower, upper).
|
||||
if ((angle.degrees() >= currentAngle.degrees()) && (angle.degrees() < nextAngle.degrees())) {
|
||||
foundAdjacentAngles = true;
|
||||
lowerBound = currentAngle;
|
||||
upperBound = nextAngle;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!foundAdjacentAngles) {
|
||||
//If we never found the interval, then it must be the "last" interval, between the i'th and 0'th values - angles are periodic, so they wrap around.
|
||||
lowerBound = polarAngles.get(polarAngles.size() - 1);
|
||||
upperBound = polarAngles.get(0);
|
||||
}
|
||||
|
||||
|
||||
//Calculate how far between those points the angle is.
|
||||
|
||||
|
||||
//This is how far between the lower and upper bounds the angle is, as a proportion (e.g., 0.5 = half-way, 0.9 = close to upper).
|
||||
double interpolationScalar = calculatePeriodicLinearInterpolateScalar(lowerBound.degrees(), upperBound.degrees(), 360, angle.degrees());
|
||||
|
||||
//Get the estimated boat speeds for the lower and upper angles.
|
||||
Pair<Double, Bearing> lowerKey = new Pair<>(polarWindSpeed, lowerBound);
|
||||
Pair<Double, Bearing> upperKey = new Pair<>(polarWindSpeed, upperBound);
|
||||
double lowerSpeed = this.polarValues.get(lowerKey);
|
||||
double upperSpeed = this.polarValues.get(upperKey);
|
||||
|
||||
//Calculate the speed at the interpolated angle.
|
||||
double interpolatedSpeed = calculateLinearInterpolation(lowerSpeed, upperSpeed, interpolationScalar);
|
||||
|
||||
|
||||
//This is the delta angle between the boat's true bearing and the destination.
|
||||
double angleBetweenDestAndTackDegrees = trueBoatBearing.degrees() - destinationAngle.degrees();
|
||||
Bearing angleBetweenDestAndTack = Bearing.fromDegrees(angleBetweenDestAndTackDegrees);
|
||||
|
||||
//This is the estimated velocity towards the target (e.g., angling away from the target reduces velocity).
|
||||
double interpolatedVelocity = Math.cos(angleBetweenDestAndTack.radians()) * interpolatedSpeed;
|
||||
|
||||
|
||||
//Check that the velocity is better, if so, update our best VMG so far, for this wind speed.
|
||||
if (interpolatedVelocity > bestVMGVelocity) {
|
||||
bestVMGVelocity = interpolatedVelocity;
|
||||
bestVMGSpeed = interpolatedSpeed;
|
||||
bestVMGAngle = trueBoatBearing;
|
||||
}
|
||||
|
||||
}
|
||||
//Angle iteration loop is finished.
|
||||
|
||||
//Create the VMG, and add to list.
|
||||
VMG vmg = new VMG(bestVMGSpeed, bestVMGAngle);
|
||||
vmgs.add(vmg);
|
||||
|
||||
}
|
||||
|
||||
|
||||
//If we never found an upper bound for the wind speed, we will only have one VMG (for the lower bound), so we can't interpolate/extrapolate anything.
|
||||
if (!foundUpperBoundWindSpeed) {
|
||||
return vmgs.get(0);
|
||||
} else {
|
||||
//We may have more than one VMG. If we found an upper and lower bound we will have two, if we only found an upper bound (e.g., wind speed = 2kn, upper = 4kn, lower = n/a) we will only have one VMG, but must interpolate between that and a new VMG with 0kn speed.
|
||||
|
||||
//We do a simple linear interpolation.
|
||||
|
||||
VMG vmg1 = vmgs.get(0);
|
||||
VMG vmg2;
|
||||
if (vmgs.size() > 1) {
|
||||
//If we have a second VMG use it.
|
||||
vmg2 = vmgs.get(1);
|
||||
} else {
|
||||
//Otherwise create a VMG with zero speed, but the same angle. This is what our VMG would be with 0 knot wind speed (boats don't move at 0 knots).
|
||||
//We also need to swap them around, as vmg1 needs to be the vmg for the lower bound wind speed, and vmg2 is the upper bound wind speed.
|
||||
vmg2 = vmg1;
|
||||
vmg1 = new VMG(0, vmg1.getBearing());
|
||||
}
|
||||
|
||||
|
||||
//Get the interpolation scalar for the current wind speed.
|
||||
double interpolationScalar = calculateLinearInterpolateScalar(polarWindSpeedLowerBound, polarWindSpeedUpperBound, trueWindSpeed);
|
||||
|
||||
//We then calculate the interpolated VMG speed and angle using the interpolation scalar.
|
||||
double interpolatedSpeed = calculateLinearInterpolation(vmg1.getSpeed(), vmg2.getSpeed(), interpolationScalar);
|
||||
double interpolatedAngleDegrees = calculateLinearInterpolation(vmg1.getBearing().degrees(), vmg2.getBearing().degrees(), interpolationScalar);
|
||||
|
||||
Bearing interpolatedAngle = Bearing.fromDegrees(interpolatedAngleDegrees);
|
||||
|
||||
|
||||
//Return the interpolated VMG.
|
||||
return new VMG(interpolatedSpeed, interpolatedAngle);
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Calculate the linear interpolation scalar for a value between two bounds. E.g., lower = 7, upper = 10, value = 8, therefore the scalar (or the proportion between the bounds) is 0.333.
|
||||
* Also assumes that the bounds are periodic - e.g., for angles a lower bound of 350deg and upper bound of 5deg is in interval of 15 degrees.
|
||||
* @param lowerBound The lower bound to interpolate between.
|
||||
* @param upperBound The upper bound to interpolate between.
|
||||
* @param value The value that sits between the lower and upper bounds.
|
||||
* @param period The period of the bounds (e.g., for angles, they have a period of 360 degrees).
|
||||
* @return The interpolation scalar for the value between two bounds.
|
||||
*/
|
||||
public static double calculatePeriodicLinearInterpolateScalar(double lowerBound, double upperBound, double period, double value) {
|
||||
|
||||
//This is the "distance" between the value and its lower bound.
|
||||
//I.e., L----V-----------U
|
||||
// <----> is lowerDelta.
|
||||
double lowerDelta = value - lowerBound;
|
||||
|
||||
//This is the "distance" between the upper and lower bound.
|
||||
//I.e., L----V-----------U
|
||||
// <----------------> is intervalDelta.
|
||||
//This can potentially be negative if we have, e.g., lower = 340deg, upper = 0deg, delta = -340deg.
|
||||
double intervalDelta = upperBound - lowerBound;
|
||||
//If it _is_ negative, modulo it to make it positive.
|
||||
//E.g., -340deg = +20deg.
|
||||
while (intervalDelta < 0) {
|
||||
intervalDelta += period;
|
||||
}
|
||||
|
||||
//This is how far between the lower and upper bounds the value is, as a proportion (e.g., 0.5 = half-way, 0.9 = close to upper).
|
||||
double interpolationScalar = lowerDelta / intervalDelta;
|
||||
|
||||
return interpolationScalar;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the linear interpolation scalar for a value between two bounds. E.g., lower = 7, upper = 10, value = 8, therefore the scalar (or the proportion between the bounds) is 0.333.
|
||||
* Assumes that the upper bound is larger than the lower bound.
|
||||
* @param lowerBound The lower bound to interpolate between.
|
||||
* @param upperBound The upper bound to interpolate between.
|
||||
* @param value The value that sits between the lower and upper bounds.
|
||||
* @return The interpolation scalar for the value between two bounds.
|
||||
*/
|
||||
public static double calculateLinearInterpolateScalar(double lowerBound, double upperBound, double value) {
|
||||
|
||||
//This is the "distance" between the value and its lower bound.
|
||||
//I.e., L----V-----------U
|
||||
// <----> is lowerDelta.
|
||||
double lowerDelta = value - lowerBound;
|
||||
|
||||
//This is the "distance" between the upper and lower bound.
|
||||
//I.e., L----V-----------U
|
||||
// <----------------> is intervalDelta.
|
||||
double intervalDelta = upperBound - lowerBound;
|
||||
|
||||
//This is how far between the lower and upper bounds the value is, as a proportion (e.g., 0.5 = half-way, 0.9 = close to upper).
|
||||
double interpolationScalar = lowerDelta / intervalDelta;
|
||||
|
||||
return interpolationScalar;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Does a linear interpolation between two bounds, using an interpolation scalar - i.e., value = lower + (scalar * delta).
|
||||
* @param lowerBound Lower bound to interpolate from.
|
||||
* @param upperBound Upper bound to interpolate to.
|
||||
* @param interpolationScalar Interpolation scalar - the proportion the target value sits between the two bounds.
|
||||
* @return The interpolated value.
|
||||
*/
|
||||
public static double calculateLinearInterpolation(double lowerBound, double upperBound, double interpolationScalar) {
|
||||
|
||||
//Get the delta between upper and lower bounds.
|
||||
double boundDelta = upperBound - lowerBound;
|
||||
|
||||
//Calculate the speed at the interpolated angle.
|
||||
double interpolatedValue = lowerBound + (boundDelta * interpolationScalar);
|
||||
|
||||
return interpolatedValue;
|
||||
}
|
||||
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,50 @@
|
||||
package seng302.Model;
|
||||
|
||||
/**
|
||||
* Created by f123 on 10-May-17.
|
||||
*/
|
||||
|
||||
/**
|
||||
* This class encapsulates VMG - that is, velocity made good. It has a speed component and a bearing component.
|
||||
*/
|
||||
public class VMG {
|
||||
|
||||
/**
|
||||
* Speed component of the VMG, in knots.
|
||||
*/
|
||||
private double speed;
|
||||
|
||||
/**
|
||||
* Bearing component of the VMG.
|
||||
*/
|
||||
private Bearing bearing;
|
||||
|
||||
|
||||
/**
|
||||
* Ctor. Creates a VMG object with a given speed and bearing (that is, a velocity).
|
||||
* @param speed Speed component of the VMG.
|
||||
* @param bearing Bearing component of the VMG.
|
||||
*/
|
||||
public VMG(double speed, Bearing bearing) {
|
||||
this.speed = speed;
|
||||
this.bearing = bearing;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the speed component of this VMG object, measured in knots.
|
||||
* @return Speed component of this VMG object.
|
||||
*/
|
||||
public double getSpeed() {
|
||||
return speed;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the bearing component of this VMG object.
|
||||
* @return Bearing component of this VMG object.
|
||||
*/
|
||||
public Bearing getBearing() {
|
||||
return bearing;
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -0,0 +1,38 @@
|
||||
package seng302.DataInput;
|
||||
|
||||
|
||||
import org.testng.annotations.Test;
|
||||
import seng302.Exceptions.InvalidPolarFileException;
|
||||
import seng302.Model.Polars;
|
||||
|
||||
import java.io.File;
|
||||
|
||||
import static org.testng.Assert.*;
|
||||
|
||||
/**
|
||||
* Created by f123 on 10-May-17.
|
||||
*/
|
||||
public class PolarParserTest {
|
||||
|
||||
@Test
|
||||
/**
|
||||
* Tests if we can parse a polar data file (stored in a string), and create a polar table.
|
||||
*/
|
||||
public void testParse() throws Exception {
|
||||
|
||||
try {
|
||||
//Parse data file.
|
||||
Polars polars = PolarParser.parse("polars/acc_polars.csv");
|
||||
|
||||
//If the parse function didn't through, it worked.
|
||||
assertTrue(true);
|
||||
}
|
||||
catch (InvalidPolarFileException e) {
|
||||
assertTrue(false);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
@ -0,0 +1,106 @@
|
||||
package seng302.Model;
|
||||
|
||||
import org.junit.Before;
|
||||
import org.junit.Test;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import static junit.framework.TestCase.assertTrue;
|
||||
import static junit.framework.TestCase.assertFalse;
|
||||
|
||||
/**
|
||||
* Created by jjg64 on 11/05/17.
|
||||
*/
|
||||
public class GPSCoordinateTest {
|
||||
List<GPSCoordinate> boundary;
|
||||
|
||||
@Before
|
||||
public void init() {
|
||||
boundary = new ArrayList<>();
|
||||
}
|
||||
|
||||
/**
|
||||
* -------
|
||||
* | |
|
||||
* | * |
|
||||
* -------
|
||||
*/
|
||||
@Test
|
||||
public void insideSquareTest() {
|
||||
boundary.add(new GPSCoordinate(0, 0));
|
||||
boundary.add(new GPSCoordinate(10, 0));
|
||||
boundary.add(new GPSCoordinate(10, 10));
|
||||
boundary.add(new GPSCoordinate(0, 10));
|
||||
|
||||
GPSCoordinate coordinate = new GPSCoordinate(2, 8);
|
||||
boolean inside = GPSCoordinate.isInsideBoundary(coordinate, boundary);
|
||||
assertTrue(inside);
|
||||
}
|
||||
|
||||
/**
|
||||
* -------
|
||||
* | |
|
||||
* * | |
|
||||
* -------
|
||||
*/
|
||||
@Test
|
||||
public void outsideSquareTest() {
|
||||
boundary.add(new GPSCoordinate(0, 0));
|
||||
boundary.add(new GPSCoordinate(10, 0));
|
||||
boundary.add(new GPSCoordinate(10, 10));
|
||||
boundary.add(new GPSCoordinate(0, 10));
|
||||
|
||||
GPSCoordinate coordinate = new GPSCoordinate(-2, 8);
|
||||
boolean inside = GPSCoordinate.isInsideBoundary(coordinate, boundary);
|
||||
assertFalse(inside);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void insideShapeWithObtuseAnglesTest() {
|
||||
boundary.add(new GPSCoordinate(0, 0));
|
||||
boundary.add(new GPSCoordinate(4, 4));
|
||||
boundary.add(new GPSCoordinate(7, 2));
|
||||
boundary.add(new GPSCoordinate(9, 5));
|
||||
boundary.add(new GPSCoordinate(10, 10));
|
||||
boundary.add(new GPSCoordinate(6, 6));
|
||||
boundary.add(new GPSCoordinate(2, 10));
|
||||
|
||||
GPSCoordinate coordinate = new GPSCoordinate(5, 5);
|
||||
boolean inside = GPSCoordinate.isInsideBoundary(coordinate, boundary);
|
||||
assertTrue(inside);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void outsideShapeWithObtuseAnglesTest() {
|
||||
boundary.add(new GPSCoordinate(0, 0));
|
||||
boundary.add(new GPSCoordinate(4, 4));
|
||||
boundary.add(new GPSCoordinate(7, 2));
|
||||
boundary.add(new GPSCoordinate(9, 5));
|
||||
boundary.add(new GPSCoordinate(10, 10));
|
||||
boundary.add(new GPSCoordinate(6, 6));
|
||||
boundary.add(new GPSCoordinate(2, 10));
|
||||
|
||||
GPSCoordinate coordinate = new GPSCoordinate(4, 3);
|
||||
boolean inside = GPSCoordinate.isInsideBoundary(coordinate, boundary);
|
||||
assertFalse(inside);
|
||||
}
|
||||
|
||||
/**
|
||||
* -------
|
||||
* | |
|
||||
* * | |
|
||||
* -------
|
||||
*/
|
||||
@Test
|
||||
public void earlyTerminationTest() {
|
||||
boundary.add(new GPSCoordinate(0, 0));
|
||||
boundary.add(new GPSCoordinate(10, 0));
|
||||
boundary.add(new GPSCoordinate(10, 10));
|
||||
boundary.add(new GPSCoordinate(0, 10));
|
||||
|
||||
GPSCoordinate coordinate = new GPSCoordinate(-2, 8);
|
||||
boolean inside = GPSCoordinate.isInsideBoundary(coordinate, boundary, new GPSCoordinate(0, 0), new GPSCoordinate(10, 10));
|
||||
assertFalse(inside);
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,261 @@
|
||||
package seng302.Model;
|
||||
|
||||
import org.junit.Before;
|
||||
import org.junit.Test;
|
||||
import seng302.DataInput.PolarParser;
|
||||
import seng302.Exceptions.InvalidPolarFileException;
|
||||
|
||||
import static org.testng.Assert.*;
|
||||
|
||||
/**
|
||||
* Created by f123 on 10-May-17.
|
||||
*/
|
||||
public class PolarsTest {
|
||||
|
||||
private Polars polars = null;
|
||||
private double angleEpsilon = 2;
|
||||
private double speedEpsilon = 0.5;
|
||||
|
||||
|
||||
/**
|
||||
* Creates the Polars object for the tests.
|
||||
*/
|
||||
@Before
|
||||
public void setUp() {
|
||||
//Read data.
|
||||
try {
|
||||
//Parse data file.
|
||||
polars = PolarParser.parse("polars/acc_polars.csv");
|
||||
}
|
||||
catch (InvalidPolarFileException e) {
|
||||
assertTrue(false);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Tests if we can calculate VMG for a variety of values.
|
||||
*/
|
||||
@Test
|
||||
public void testVMG1() {
|
||||
|
||||
//Test 1.
|
||||
//This test has a wind speed that is between two values from the table (12kn, 16kn, this is 15.9kn).
|
||||
Bearing windAngle1 = Bearing.fromDegrees(31.5);
|
||||
Bearing destAngle1 = Bearing.fromDegrees(65.32);
|
||||
double windSpeed1 = 15.9;//knots
|
||||
Bearing vmgAngle1 = Bearing.fromDegrees(72.4);
|
||||
double vmgSpeed1 = 30.4;
|
||||
|
||||
VMG calcVMG1 = polars.calculateVMG(windAngle1, windSpeed1, destAngle1, Bearing.fromDegrees(0), Bearing.fromDegrees(359.9));
|
||||
Bearing calcVMGAngle1 = calcVMG1.getBearing();
|
||||
double calcVMGSpeed1 = calcVMG1.getSpeed();
|
||||
|
||||
|
||||
assertEquals(calcVMGAngle1.degrees(), vmgAngle1.degrees(), angleEpsilon);
|
||||
assertEquals(calcVMGSpeed1, vmgSpeed1, speedEpsilon);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Tests if we can calculate VMG for a variety of values.
|
||||
*/
|
||||
@Test
|
||||
public void testVMG2() {
|
||||
//Test 2.
|
||||
//This test has a wind speed much larger than any in the table (max from table is 30kn, this is 40kn).
|
||||
Bearing windAngle2 = Bearing.fromDegrees(200);
|
||||
Bearing destAngle2 = Bearing.fromDegrees(35);
|
||||
double windSpeed2 = 40;//knots
|
||||
Bearing vmgAngle2 = Bearing.fromDegrees(69);
|
||||
double vmgSpeed2 = 32.8;
|
||||
|
||||
VMG calcVMG2 = polars.calculateVMG(windAngle2, windSpeed2, destAngle2, Bearing.fromDegrees(0), Bearing.fromDegrees(359.9));
|
||||
Bearing calcVMGAngle2 = calcVMG2.getBearing();
|
||||
double calcVMGSpeed2 = calcVMG2.getSpeed();
|
||||
|
||||
|
||||
assertEquals(calcVMGAngle2.degrees(), vmgAngle2.degrees(), angleEpsilon);
|
||||
assertEquals(calcVMGSpeed2, vmgSpeed2, speedEpsilon);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Tests if we can calculate VMG for a variety of values.
|
||||
*/
|
||||
@Test
|
||||
public void testVMG3() {
|
||||
|
||||
//Test 3.
|
||||
//This test has a wind speed lower than any non-zero values from the table (table has 0kn, 4kn, this is 2kn).
|
||||
Bearing windAngle3 = Bearing.fromDegrees(345);
|
||||
Bearing destAngle3 = Bearing.fromDegrees(199);
|
||||
double windSpeed3 = 2;//knots
|
||||
Bearing vmgAngle3 = Bearing.fromDegrees(222);
|
||||
double vmgSpeed3 = 4.4;
|
||||
|
||||
VMG calcVMG3 = polars.calculateVMG(windAngle3, windSpeed3, destAngle3, Bearing.fromDegrees(0), Bearing.fromDegrees(359.9));
|
||||
Bearing calcVMGAngle3 = calcVMG3.getBearing();
|
||||
double calcVMGSpeed3 = calcVMG3.getSpeed();
|
||||
|
||||
|
||||
assertEquals(calcVMGAngle3.degrees(), vmgAngle3.degrees(), angleEpsilon);
|
||||
assertEquals(calcVMGSpeed3, vmgSpeed3, speedEpsilon);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Tests if we can calculate VMG for a variety of values.
|
||||
*/
|
||||
@Test
|
||||
public void testVMG4() {
|
||||
//Test 4.
|
||||
//This test has a wind speed of 0.
|
||||
Bearing windAngle4 = Bearing.fromDegrees(5);
|
||||
Bearing destAngle4 = Bearing.fromDegrees(100);
|
||||
double windSpeed4 = 0;//knots
|
||||
Bearing vmgAngle4 = Bearing.fromDegrees(100);
|
||||
double vmgSpeed4 = 0;
|
||||
|
||||
VMG calcVMG4 = polars.calculateVMG(windAngle4, windSpeed4, destAngle4, Bearing.fromDegrees(0), Bearing.fromDegrees(359.9));
|
||||
Bearing calcVMGAngle4 = calcVMG4.getBearing();
|
||||
double calcVMGSpeed4 = calcVMG4.getSpeed();
|
||||
|
||||
|
||||
assertEquals(calcVMGAngle4.degrees(), vmgAngle4.degrees(), angleEpsilon);
|
||||
assertEquals(calcVMGSpeed4, vmgSpeed4, speedEpsilon);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Tests if we can calculate VMG for a variety of values.
|
||||
*/
|
||||
@Test
|
||||
public void testVMG5() {
|
||||
|
||||
//Test 5.
|
||||
//This test has a bearing bound of [55, 70), which only contains a suboptimal VMG.
|
||||
Bearing windAngle5 = Bearing.fromDegrees(5);
|
||||
Bearing destAngle5 = Bearing.fromDegrees(100);
|
||||
double windSpeed5 = 9;//knots
|
||||
Bearing vmgAngle5 = Bearing.fromDegrees(70);
|
||||
double vmgSpeed5 = 15;
|
||||
Bearing bearingUpperBound5 = Bearing.fromDegrees(70);
|
||||
Bearing bearingLowerBound5 = Bearing.fromDegrees(55);
|
||||
|
||||
VMG calcVMG5 = polars.calculateVMG(windAngle5, windSpeed5, destAngle5, bearingLowerBound5, bearingUpperBound5);
|
||||
Bearing calcVMGAngle5 = calcVMG5.getBearing();
|
||||
double calcVMGSpeed5 = calcVMG5.getSpeed();
|
||||
|
||||
|
||||
assertEquals(calcVMGAngle5.degrees(), vmgAngle5.degrees(), angleEpsilon);
|
||||
assertEquals(calcVMGSpeed5, vmgSpeed5, speedEpsilon);
|
||||
assertTrue(calcVMGAngle5.degrees() >= bearingLowerBound5.degrees());
|
||||
assertTrue(calcVMGAngle5.degrees() <= bearingUpperBound5.degrees());
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Tests if we can calculate VMG for a variety of values.
|
||||
*/
|
||||
@Test
|
||||
public void testVMG6() {
|
||||
|
||||
//Test 6.
|
||||
//This test has a bearing bound of [70, 55), which has a lower bound > upper bound, which is complementary to [55, 70).
|
||||
Bearing windAngle6 = Bearing.fromDegrees(5);
|
||||
Bearing destAngle6 = Bearing.fromDegrees(100);
|
||||
double windSpeed6 = 11;//knots
|
||||
Bearing vmgAngle6 = Bearing.fromDegrees(92.85);
|
||||
double vmgSpeed6 = 20.086;
|
||||
Bearing bearingUpperBound6 = Bearing.fromDegrees(55);
|
||||
Bearing bearingLowerBound6 = Bearing.fromDegrees(70);
|
||||
|
||||
VMG calcVMG6 = polars.calculateVMG(windAngle6, windSpeed6, destAngle6, bearingLowerBound6, bearingUpperBound6);
|
||||
Bearing calcVMGAngle6 = calcVMG6.getBearing();
|
||||
double calcVMGSpeed6 = calcVMG6.getSpeed();
|
||||
|
||||
|
||||
assertEquals(calcVMGAngle6.degrees(), vmgAngle6.degrees(), angleEpsilon);
|
||||
assertEquals(calcVMGSpeed6, vmgSpeed6, speedEpsilon);
|
||||
if (bearingLowerBound6.degrees() > bearingUpperBound6.degrees()) {
|
||||
assertTrue((calcVMGAngle6.degrees() >= bearingLowerBound6.degrees()) || (calcVMGAngle6.degrees() <= bearingUpperBound6.degrees()));
|
||||
} else {
|
||||
assertTrue(calcVMGAngle6.degrees() >= bearingLowerBound6.degrees());
|
||||
assertTrue(calcVMGAngle6.degrees() <= bearingUpperBound6.degrees());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Tests if we can calculate VMG for a variety of values.
|
||||
*/
|
||||
@Test
|
||||
public void testVMG7() {
|
||||
|
||||
|
||||
//Test 7.
|
||||
//This test has a bearing bound of [340, 5), which has a lower bound > upper bound, which is complementary to [5, 340).
|
||||
Bearing windAngle7 = Bearing.fromDegrees(340);
|
||||
Bearing destAngle7 = Bearing.fromDegrees(30);
|
||||
double windSpeed7 = 7;//knots
|
||||
Bearing vmgAngle7 = Bearing.fromDegrees(5);
|
||||
double vmgSpeed7 = 11;
|
||||
Bearing bearingUpperBound7 = Bearing.fromDegrees(5);
|
||||
Bearing bearingLowerBound7 = Bearing.fromDegrees(340);
|
||||
|
||||
VMG calcVMG7 = polars.calculateVMG(windAngle7, windSpeed7, destAngle7, bearingLowerBound7, bearingUpperBound7);
|
||||
Bearing calcVMGAngle7 = calcVMG7.getBearing();
|
||||
double calcVMGSpeed7 = calcVMG7.getSpeed();
|
||||
|
||||
|
||||
assertEquals(calcVMGAngle7.degrees(), vmgAngle7.degrees(), angleEpsilon);
|
||||
assertEquals(calcVMGSpeed7, vmgSpeed7, speedEpsilon);
|
||||
if (bearingLowerBound7.degrees() > bearingUpperBound7.degrees()) {
|
||||
assertTrue((calcVMGAngle7.degrees() >= bearingLowerBound7.degrees()) || (calcVMGAngle7.degrees() <= bearingUpperBound7.degrees()));
|
||||
|
||||
} else {
|
||||
assertTrue(calcVMGAngle7.degrees() >= bearingLowerBound7.degrees());
|
||||
assertTrue(calcVMGAngle7.degrees() <= bearingUpperBound7.degrees());
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Tests if we can calculate VMG for a variety of values.
|
||||
*/
|
||||
@Test
|
||||
public void testVMG8() {
|
||||
//Test 8.
|
||||
//This test has a bearing bound of [340, 5), which has a lower bound > upper bound, which is complementary to [5, 340). Due to the wind, dest angles, and bearing bounds, it cannot actually find a VMG > 0 (valid VMGs will actually be in the angle interval [10, 190]), so it will return the VMG(angle=0, speed=0).
|
||||
Bearing windAngle8 = Bearing.fromDegrees(5);
|
||||
Bearing destAngle8 = Bearing.fromDegrees(100);
|
||||
double windSpeed8 = 7;//knots
|
||||
Bearing vmgAngle8 = Bearing.fromDegrees(0);
|
||||
double vmgSpeed8 = 0;
|
||||
Bearing bearingUpperBound8 = Bearing.fromDegrees(5);
|
||||
Bearing bearingLowerBound8 = Bearing.fromDegrees(340);
|
||||
|
||||
VMG calcVMG8 = polars.calculateVMG(windAngle8, windSpeed8, destAngle8, bearingLowerBound8, bearingUpperBound8);
|
||||
Bearing calcVMGAngle8 = calcVMG8.getBearing();
|
||||
double calcVMGSpeed8 = calcVMG8.getSpeed();
|
||||
|
||||
|
||||
assertEquals(calcVMGAngle8.degrees(), vmgAngle8.degrees(), 0);
|
||||
assertEquals(calcVMGSpeed8, vmgSpeed8, 0);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -0,0 +1,108 @@
|
||||
package seng302.Networking.Messages.Enums;
|
||||
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* Enumeration that encapsulates the various statuses a race can have. See AC35 streaming spec, 4.2.
|
||||
*/
|
||||
public enum RaceStatusEnum {
|
||||
|
||||
NOT_ACTIVE(0),
|
||||
|
||||
/**
|
||||
* Between 3:00 and 1:00 minutes before start.
|
||||
*/
|
||||
WARNING(1),
|
||||
|
||||
/**
|
||||
* Less than 1:00 minutes before start.
|
||||
*/
|
||||
PREPARATORY(2),
|
||||
STARTED(3),
|
||||
|
||||
/**
|
||||
* Obsolete.
|
||||
*/
|
||||
FINISHED(4),
|
||||
|
||||
/**
|
||||
* Obsolete.
|
||||
*/
|
||||
RETIRED(5),
|
||||
ABANDONED(6),
|
||||
POSTPONED(7),
|
||||
TERMINATED(8),
|
||||
RACE_START_TIME_NOT_SET(9),
|
||||
|
||||
/**
|
||||
* More than 3:00 minutes until start.
|
||||
*/
|
||||
PRESTART(10),
|
||||
|
||||
/**
|
||||
* Used to indicate that a given byte value is invalid.
|
||||
*/
|
||||
NOT_A_STATUS(-1);
|
||||
|
||||
|
||||
/**
|
||||
* Primitive value of the enum.
|
||||
*/
|
||||
private byte value;
|
||||
|
||||
|
||||
/**
|
||||
* Ctor. Creates a RaceStatusEnum from a given primitive integer value, cast to a byte.
|
||||
* @param value Integer, which is cast to byte, to construct from.
|
||||
*/
|
||||
private RaceStatusEnum(int value) {
|
||||
this.value = (byte) value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the primitive value of the enum.
|
||||
* @return Primitive value of the enum.
|
||||
*/
|
||||
public byte getValue() {
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Stores a mapping between Byte values and RaceStatusEnum values.
|
||||
*/
|
||||
private static final Map<Byte, RaceStatusEnum> byteToStatusMap = new HashMap<>();
|
||||
|
||||
|
||||
/**
|
||||
* Static initialization block. Initializes the byteToStatusMap.
|
||||
*/
|
||||
static {
|
||||
for (RaceStatusEnum type : RaceStatusEnum.values()) {
|
||||
RaceStatusEnum.byteToStatusMap.put(type.value, type);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the enumeration value which corresponds to a given byte value.
|
||||
* @param raceStatusByte Byte value to convert to a RaceStatusEnum value.
|
||||
* @return The RaceStatusEnum value which corresponds to the given byte value.
|
||||
*/
|
||||
public static RaceStatusEnum fromByte(byte raceStatusByte) {
|
||||
//Gets the corresponding MessageType from the map.
|
||||
RaceStatusEnum type = RaceStatusEnum.byteToStatusMap.get(raceStatusByte);
|
||||
|
||||
if (type == null) {
|
||||
//If the byte value wasn't found, return the NOT_A_STATUS RaceStatusEnum.
|
||||
return RaceStatusEnum.NOT_A_STATUS;
|
||||
} else {
|
||||
//Otherwise, return the RaceStatusEnum.
|
||||
return type;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
@ -0,0 +1,87 @@
|
||||
package seng302.Networking.Messages.Enums;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* Enumeration that encapsulates the various types of races. See AC35 streaming spec, 4.2.
|
||||
*/
|
||||
public enum RaceTypeEnum {
|
||||
|
||||
|
||||
/**
|
||||
* A race between two boats.
|
||||
*/
|
||||
MATCH_RACE(1),
|
||||
|
||||
/**
|
||||
* A race between a fleet of boats.
|
||||
*/
|
||||
FLEET_RACE(2),
|
||||
|
||||
/**
|
||||
* Used to indicate that a given byte value is invalid.
|
||||
*/
|
||||
NOT_A_STATUS(-1);
|
||||
|
||||
|
||||
/**
|
||||
* Primitive value of the enum.
|
||||
*/
|
||||
private byte value;
|
||||
|
||||
|
||||
/**
|
||||
* Ctor. Creates a RaceTypeEnum from a given primitive integer value, cast to a byte.
|
||||
* @param value Integer, which is cast to byte, to construct from.
|
||||
*/
|
||||
private RaceTypeEnum(int value) {
|
||||
this.value = (byte) value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the primitive value of the enum.
|
||||
* @return Primitive value of the enum.
|
||||
*/
|
||||
public byte getValue() {
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Stores a mapping between Byte values and RaceStatusEnum values.
|
||||
*/
|
||||
private static final Map<Byte, RaceTypeEnum> byteToStatusMap = new HashMap<>();
|
||||
|
||||
|
||||
/**
|
||||
* Static initialization block. Initializes the byteToStatusMap.
|
||||
*/
|
||||
static {
|
||||
for (RaceTypeEnum type : RaceTypeEnum.values()) {
|
||||
RaceTypeEnum.byteToStatusMap.put(type.value, type);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the enumeration value which corresponds to a given byte value.
|
||||
* @param raceTypeEnum Byte value to convert to a RaceTypeEnum value.
|
||||
* @return The RaceTypeEnum value which corresponds to the given byte value.
|
||||
*/
|
||||
public static RaceTypeEnum fromByte(byte raceTypeEnum) {
|
||||
//Gets the corresponding MessageType from the map.
|
||||
RaceTypeEnum type = RaceTypeEnum.byteToStatusMap.get(raceTypeEnum);
|
||||
|
||||
if (type == null) {
|
||||
//If the byte value wasn't found, return the NOT_A_STATUS RaceTypeEnum.
|
||||
return RaceTypeEnum.NOT_A_STATUS;
|
||||
} else {
|
||||
//Otherwise, return the RaceTypeEnum.
|
||||
return type;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
@ -0,0 +1,17 @@
|
||||
package seng302.Controllers;
|
||||
|
||||
import javafx.fxml.FXML;
|
||||
import javafx.scene.layout.Pane;
|
||||
|
||||
import java.net.URL;
|
||||
import java.util.ResourceBundle;
|
||||
|
||||
/**
|
||||
* Created by Joseph on 22/05/2017.
|
||||
*/
|
||||
public class ArrowController extends Controller {
|
||||
|
||||
@Override
|
||||
public void initialize(URL location, ResourceBundle resources) {
|
||||
}
|
||||
}
|
||||
|
After Width: | Height: | Size: 16 KiB |
@ -0,0 +1,34 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
|
||||
<?import javafx.scene.paint.*?>
|
||||
<?import javafx.scene.text.*?>
|
||||
<?import javafx.scene.control.*?>
|
||||
<?import javafx.scene.shape.*?>
|
||||
<?import javafx.scene.image.*?>
|
||||
<?import java.lang.*?>
|
||||
<?import javafx.scene.layout.*?>
|
||||
|
||||
<Pane fx:id="compass" maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-Infinity" prefHeight="125.0" prefWidth="125.0" xmlns="http://javafx.com/javafx/8" xmlns:fx="http://javafx.com/fxml/1">
|
||||
<children>
|
||||
<StackPane fx:id="arrow" prefHeight="125.0" prefWidth="125.0">
|
||||
<children>
|
||||
<ImageView fitHeight="75.0" fitWidth="75.0">
|
||||
<image>
|
||||
<Image url="@../images/arrow.png" />
|
||||
</image>
|
||||
</ImageView>
|
||||
</children>
|
||||
</StackPane>
|
||||
<Circle fill="#1f93ff00" layoutX="63.0" layoutY="63.0" radius="60.0" stroke="BLACK" strokeType="INSIDE" strokeWidth="3.0" />
|
||||
<Label layoutX="55.0" layoutY="1.0" text="N">
|
||||
<font>
|
||||
<Font name="System Bold" size="18.0" />
|
||||
</font>
|
||||
</Label>
|
||||
<Label layoutX="42.0" layoutY="99.0" text="Wind">
|
||||
<font>
|
||||
<Font name="System Bold" size="16.0" />
|
||||
</font>
|
||||
</Label>
|
||||
</children>
|
||||
</Pane>
|
||||
Loading…
Reference in new issue